

CCR COMPLIANCE GROUNDWATER MONITORING AND CORRECTIVE ACTION ANNUAL REPORT NORTH ASH POND AND ASH LANDFILL

Prepared for:

NRG Power Midwest LP New Castle Generating Station West Pittsburg, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. Pittsburgh, Pennsylvania

January 2019

Table of Contents_

List of	⁻ ablesi
List of	iguresi
List of A	\ppendicesi
1.0	Introduction
2.0	North Ash Pond
	2.1 Groundwater Monitoring Network 2.2 2018 Data Collection 2.3 Alternate Source Demonstration. 2.4 2018 Monitoring Program Transitions. 2.5 2018 Corrective Actions 2.6 2019 Projected Activities
3.0	Ash Landfill 3.1 Groundwater Monitoring Network 3.2 2018 Data Collection 3.3 Alternate Source Demonstration. 3.4 2018 Monitoring Program Transitions. 3.5 2018 Corrective Actions 3.6 2019 Projected Activities

Tables

Figures

Appendices

List of Tab	les
Table 1 Table 2 Table 3 Table 4	North Ash Pond Groundwater Analytical Data Summary—Appendix III Constituents North Ash Pond Groundwater Analytical Data Summary—Appendix IV Constituents Ash Landfill Groundwater Analytical Data Summary—Appendix III Constituents Ash Landfill Groundwater Analytical Data Summary—Appendix IV Constituents
List of Figu	ıres
Figure 1	North Ash Pond and Ash Landfill—Location and Groundwater Monitoring System Map
List of App	pendices
Appendix A	Ash Landfill—Alternate Source Demonstration

1.0 Introduction

Title 40 Code of Federal Regulations (CFR) §257.90 mandates that existing Coal Combustion Residuals (CCR) landfills and surface impoundments, also known as CCR units, be subject to groundwater monitoring and corrective action requirements as further detailed in §257.91 through §257.98. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. Specific obligations for Owners and Operators of existing CCR units regarding the preparation of "Annual Groundwater Monitoring and Corrective Action Reports (Annual Report)" are outlined in §257.90(e)(1-5). The first of these Annual Reports must be completed no later than January 31, 2018, and provide information to address the following aspects for the preceding calendar year:

- Document the status of the groundwater monitoring and corrective action program for the respective CCR units;
- Summarize key actions completed;
- Describe any problems encountered and actions taken to resolve the problems; and
- Offer a projection of key activities for the upcoming year.

At a minimum, the Annual Report must contain the following information to the extent applicable and available:

- A map, aerial image, or diagram showing the CCR unit and all background/upgradient and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program;
- Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
- In addition to all the monitoring data obtained under §257.90 through §257.98, a summary including the number of groundwater samples that were collected for analysis for each background/upgradient and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;
- A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and
- Any other information required to be included as specified in §257.90 through §257.98.

The New Castle Generating Station, operated by NRG Power Midwest LP, a subsidiary of GenOn Energy, Inc. (GenOn), is a coal-fired power plant located in West Pittsburg, Pennsylvania. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with station operations include the New Castle Plant Ash Landfill and the North Ash Pond; however, the management/placement of CCR materials in both units has been significantly curtailed since the transition from coal to natural gas firing was effected in mid-2016. Each of these CCR units has a dedicated groundwater monitoring system that was originally installed to comply with Commonwealth of Pennsylvania Residual Waste Regulations, and was subsequently evaluated and modified (as needed) for use under the CCR program.

In summary, this Annual Report has been prepared to comply with the requirements of §257.90(e), addressing each of the New Castle Station's CCR Units with respect to the groundwater monitoring and corrective actions undertaken during Calendar Year 2018. This Annual Report and all subsequent reports thereto will be placed in the Station's operating record per §257.105(h)(1), noticed to the State Director per §257.106(h)(1), and posted to the publicly accessible internet site per §257.107(h)(1).

2.0 North Ash Pond

2.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the North Ash Pond is comprised of four wells, including Well MP-20 (upgradient), and Wells MP-21, MP-22, and MP-23 (downgradient). All of the wells are screened within the unconsolidated materials, wherein the uppermost aquifer exists. The locations of the wells are shown on the attached Figure 1, along with depiction of the generalized groundwater flow direction in the area of the pond. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2018 reporting period.

2.2 2018 Data Collection

During January 2018, the results from the October 2017 Detection Monitoring event were reviewed, and subsequent determination made that one downgradient well (MP-23) showed an Appendix III constituent (chloride) at levels representing a statistically significant increase (SSI) above corresponding background concentrations (see Table 1). Accordingly, and per the provisions of §257.94(e)(2), efforts were undertaken to conduct an Alternate Source Demonstration in an attempt to identify a potential source other than the North Ash Pond which was responsible for the observed SSI. This Alternate Source Demonstration, further discussed below in Section 2.3, was ultimately inconclusive and did not yield identification of another potential source for the elevated chloride levels in Well MP-23.

Per the inconclusive findings from the Alternate Source Demonstration for chloride, the North Ash Pond was transitioned into the CCR Assessment Monitoring Program, and an initial round of samples covering all Appendix IV constituents was collected in May 2018 (see Table 2) per §257.95(b). From these results, the detected Appendix IV constituents were carried forward and analyzed during the August 2018 Assessment Monitoring event. The analytical data from this event have since been reviewed, and are anticipated to trigger the First Quarter 2019 performance of another Alternate Source Demonstration (specific to arsenic), based on concentrations in all downgradient wells (see Table 2) representing a statistically significant level (SSL) above the corresponding groundwater protection standard.

2.3 Alternate Source Demonstration

As noted above, an Alternate Source demonstration was conducted in early-2018 which yielded inconclusive findings relative to the elevated chloride levels in downgradient Well MP-23. This Demonstration, which was completed in April 2018 by APTIM's qualified professional engineer, relied principally on geochemical comparisons of Well MP-23 water quality to other possible

sources. None of these comparisons provided ample evidence to definitively identify the chloride as being from a source other than the North Ash Pond.

2.4 2018 Monitoring Program Transitions

In 2018, the North Ash Pond transitioned into the Assessment Monitoring Program based on the inconclusive findings from the Alternate Source Demonstration discussed above in Section 2.3. The transition to the Assessment Monitoring Program was implemented during mid-April 2018, including placement of an appropriate notification into the facility's operating record per §257.105(h).

2.5 2018 Corrective Actions

During 2018, there were no problems identified or corrective actions undertaken.

2.6 2019 Projected Activities

An Alternate Source Demonstration for arsenic is anticipated to be conducted during the First Quarter of 2019, along with continued Assessment Monitoring activities, as appropriate.

3.1 Groundwater Monitoring Network

The CCR groundwater monitoring system for the Ash Landfill is comprised of six wells, including Wells MP-11 and P-6 (upgradient), and Wells MP-10R, MP-12, MP-15, and MP-18 (downgradient). All of the wells are screened within the unconsolidated materials, wherein the uppermost aquifer exists. The locations of the wells are shown on Figure 1 along with a depiction of the generalized groundwater flow direction. Each of these wells was already existing, and no new wells were added nor were any existing wells abandoned/replaced during the 2018 reporting period.

3.2 2018 Data Collection

During January 2018, the results from the October 2017 Detection Monitoring event were reviewed, and subsequent determination made that several downgradient wells showed Appendix III constituents (boron, calcium, sulfate, and total dissolved solids [TDS]) at levels representing SSIs above corresponding background concentrations (see Table 3). Accordingly, and per the provisions of §257.94(e)(2), efforts were undertaken to conduct an Alternate Source Demonstration in an attempt to identify a potential source other than the Ash Landfill which was responsible for the observed SSIs. This Alternate Source Demonstration, further discussed below in Section 3.3 and included in Appendix A, was ultimately successful in determining that the historical ash impoundment (located beneath and beyond the lined limits of the current Ash Landfill) was contributing to the elevated concentrations of boron, calcium, sulfate, and TDS in the downgradient wells. As a result, the Ash Landfill was deemed to remain in the CCR Detection Monitoring Program, and was additionally sampled in May 2018 and November 2018 with continuing observations of SSIs for the same general group of Appendix III constituents (see Table 3).

3.3 Alternate Source Demonstration

As noted above, an Alternate Source Demonstration was conducted in early-2018 which resolved the observed SSIs for boron, calcium, sulfate and TDS in several of the downgradient wells, relative to the levels measured during the October 2017 Detection Monitoring event. This Demonstration, which was completed in April 2018 and certified by APTIM's qualified professional engineer, provided the necessary documentation to confirm that the Ash Landfill is not creating unacceptable impacts to groundwater. Considering the May 2018 and November 2018 Detection Monitoring events showed SSIs for the same general group of Appendix III constituents, and that flow in the Ash Landfill leachate detection zone remains absent, the findings from the April 2018 demonstration remain relevant and applicable.

3.4 2018 Monitoring Program Transitions

During 2018, there were no transitions between monitoring programs. As a result of the successful Alternate Source Demonstration, only activities in support of the Detection Monitoring Program were conducted.

3.5 2018 Corrective Actions

During 2018, there were no problems identified or corrective actions undertaken.

3.6 2019 Projected Activities

It is anticipated that Detection Monitoring activities will continue for the Ash Landfill during 2019, with continued review of Appendix III constituent concentrations and comparison against the calculated background values.

Table 1 **New Castle Generating Station** North Ash Pond--Groundwater Analytical Data **CCR Appendix III Constituents**

					x iii constituei		Total Dissolved		
Monitoring Well	Date Sampled	Groundwater Elevation	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)
	Sampleu	(ft. MSL)			Cal	culated Backgrou	nd		
			3.29	669	32	0.5	2764	1610	6.45-6.90
	29-Dec-15	766.13	1.81	506	30	< 0.5	2340	1390	6.72
	2-Mar-16	766.55	1.68	606	28	< 0.1	2260	1190	6.77
	2-Jun-16	766.13	1.38	452	28	< 0.1	2310	1100	6.62
	8-Sep-16	763.41	1.53	511	26	0.1	2230	1150	6.68
140.00	1-Dec-16	764.11	1.73	500	25	< 0.1	2160	1050	6.79
MP-20	2-Mar-17	766.95	2.13	572	27	< 0.1	2320	1330	6.72
(Upgradient)	31-May-17	768.15	2.23	570	27	< 0.2	2520	1270	6.57
	30-Aug-17	765.05	2.39	586	26	< 0.1	2530	1150	6.66
	9-Oct-17	764.22	2.39	583	22	< 0.1	2590	1080	6.69
	24-May-18	766.71	2.55	604	28	< 0.5	2470	1310	6.93
	29-Aug-18	765.31	2.59	560	23	< 0.5	2430	1170	6.80
	29-Dec-15	765.68	1.66	473	34	< 0.5	2260	1260	6.68
MP-21	2-Mar-16	766.09	1.64	527	31	< 0.1	2160	1150	6.69
	2-Jun-16	765.63	1.52	456	30	< 0.1	2450	1210	6.53
	8-Sep-16	762.86	1.59	477	29	0.2	2300	1220	6.56
	1-Dec-16	763.54	1.77	529	27	< 0.1	2210	1060	6.66
	2-Mar-17	766.53	< 0.05	489	30	0.1	2210	1230	6.85
(Downgradient)	1-Jun-17	767.65	1.67	525	32	< 0.2	2270	1220	6.52
	30-Aug-17	764.62	1.71	510	31	< 0.1	2310	1070	6.59
	9-Oct-17	763.81	1.72	467	27	< 0.1	2360	959	6.69
	24-May-18	766.14	1.76	448	33	< 0.5	2150	1090	6.91
	29-Aug-18	764.70	1.52	475	31	< 0.5	2320	1140	6.77
	29-Dec-15	764.41	1.38	387	34	< 0.5	1650	761	6.76
	2-Mar-16	764.59	1.41	388	34	< 0.1	1620	816	6.72
	2-Jun-16	763.89	1.27	336	33	< 0.1	1700	801	6.54
	8-Sep-16	761.33	1.39	404	32	0.1	1750	845	6.57
MP-22	1-Dec-16	761.92	1.32	409	31	< 0.1	1710	798	6.62
(Downgradient)	2-Mar-17	765.03	1.45	381	33	0.1	1710	868	6.63
(Downgradient)	1-Jun-17	766.06	1.39	436	35	< 0.2	1790	915	6.47
	30-Aug-17	763.17	1.44	429	33	< 0.1	1860	832	6.66
	9-Oct-17	762.42	1.50	411	31	< 0.1	1990	840	6.55
	24-May-18	764.35	1.62	392	35	< 0.5	1950	861	6.70
	29-Aug-18	763.22	1.16	424	33	< 0.5	1940	921	6.60
	29-Dec-15	759.66	0.78	408	59	< 0.5	1740	1060	6.72
	2-Mar-16	754.89	0.81	436	50	< 0.1	1710	999	6.70
	2-Jun-16	754.80	0.73	357	47	0.1	1790	981	6.49
	8-Sep-16	750.96	0.82	397	48	0.5	1630	873	6.53
MP-23	1-Dec-16	753.21	0.74	371	52	0.1	1430	815	6.61
(Downgradient)	2-Mar-17	761.40	0.80	334	48	0.2	1350	702	6.77
,	1-Jun-17	762.92	0.77	361	55	< 0.2	1360	769	6.56
	30-Aug-17	760.38	0.72	297	54	< 0.1	1290	595	6.92
	9-Oct-17	760.36	0.68	278	52	0.1	1270	563	6.72
	24-May-18	762.00	0.83	338	58	< 0.5	1190	518	6.89
	29-Aug-18	760.33	0.76	275	58	< 0.5	1090	556	6.73

- Notes:

 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru Aug. 2017) of groundwater sampling data for Well MP-20.

Table 2 New Castle Generating Station North Ash Pond--Groundwater Analytical Data CCR Appendix IV Constituents

		Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryllium (mg/L)	Total Cadmium (mg/L)	Total Chromium (mg/L)	Total Cobalt (mg/L)	Total Fluoride (mg/L)	Total Lead (mg/L)	Total Lithium (mg/L)	Total Mercury (mg/L)	Total Molybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
	Date							Ca	Iculated Background	d						
Monitoring Well	Sampled	0.001	0.02	0.09	0.001	0.002	0.01	0.005	0.5	0.001	0.40	0.0002	0.02	0.001	0.0002	4.19
								Ground	water Protection Sta	andard				_		
		MCL	Background	MCL	MCL	MCL	MCL	RSL	MCL	RSL	Background	MCL	RSL	MCL	MCL	MCL
		0.006	0.02	2	0.004	0.005	0.1	0.006	4.0	0.015	0.40	0.002	0.10	0.05	0.002	5
	29-Dec-15	< 0.001	0.016	0.07	< 0.001	< 0.002	< 0.01	< 0.005	< 0.5	< 0.001	0.18	< 0.0002	< 0.02	< 0.001	< 0.0002	1.35
	2-Mar-16	< 0.001	0.018	0.06	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	0.16	< 0.0002	< 0.02	< 0.001	< 0.0002	1.29
	2-Jun-16	< 0.001	0.019	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	0.13	< 0.0002	< 0.02	< 0.001	< 0.0002	1.56
	8-Sep-16	< 0.001	0.020	0.06	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	0.14	< 0.0002	< 0.02	< 0.001	< 0.0002	2.77
MP-20	1-Dec-16	< 0.001	0.018	0.07	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.1	< 0.001	0.15	< 0.0002	< 0.02	< 0.001	< 0.0002	1.20
(Upgradient)	2-Mar-17	< 0.001	0.018	0.08	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.1	< 0.001	0.23	< 0.0002	< 0.02	< 0.001	< 0.0002	0.08
	31-May-17	< 0.001	0.018	0.07	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.2	< 0.001	0.24	< 0.0002	< 0.02	< 0.001	< 0.0002	2.18
	30-Aug-17	< 0.001	0.019	0.07	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.1	< 0.001	0.25	< 0.0002	< 0.02	< 0.001	< 0.0002	2.39
	24-May-18	< 0.001	0.018	0.07	< 0.001	< 0.002	< 0.01	< 0.005	< 0.5	< 0.001	0.29	< 0.0002	< 0.02	< 0.001	< 0.0002	1.46
	29-Aug-18	Not Analyzed	0.018	0.07	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.26	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	1.35
	29-Dec-15	< 0.001	0.079	0.12	< 0.001	< 0.002	< 0.01	< 0.005	< 0.5	< 0.001	0.08	< 0.0002	< 0.02	< 0.001	< 0.0002	1.12
	2-Mar-16	< 0.001	0.080	0.13	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	0.08	< 0.0002	< 0.02	< 0.001	< 0.0002	1.92
	2-Jun-16	< 0.001	0.091	0.12	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	0.08	< 0.0002	< 0.02	< 0.001	< 0.0002	2.27
	8-Sep-16	< 0.001	0.084	0.13	< 0.001	< 0.002	< 0.01	< 0.005	0.2	< 0.001	0.09	< 0.0002	< 0.02	< 0.001	< 0.0002	3.19
MP-21	1-Dec-16	< 0.001	0.085	0.13	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	0.09	< 0.0002	< 0.02	< 0.001	< 0.0002	1.15
(Downgradient)	2-Mar-17	< 0.001	0.083	0.12	< 0.001	< 0.0002	< 0.01	< 0.005	0.1	< 0.001	0.09	< 0.0002	< 0.02	< 0.001	< 0.0002	1.10
	1-Jun-17	< 0.001	0.081	0.12	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.2	< 0.001	0.09	< 0.0002	< 0.02	< 0.001	< 0.0002	1.88
	30-Aug-17	< 0.001	0.088	0.11	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.1	< 0.001	0.09	< 0.0002	< 0.02	< 0.001	< 0.0002	3.11
	24-May-18	< 0.001	0.087	0.11	< 0.001	< 0.002	< 0.01	< 0.005	< 0.5	< 0.001	0.09	< 0.0002	< 0.02	< 0.001	< 0.0002	2.37
	29-Aug-18	Not Analyzed	0.071	0.11	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.09	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	1.49
	29-Dec-15	< 0.001	0.045	0.07	< 0.001	< 0.002	< 0.01	< 0.005		< 0.001	0.04	< 0.0002	< 0.02	< 0.001	< 0.0002	0.64
	2-Mar-16	< 0.001	0.058	0.06	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	0.03	< 0.0002	< 0.02	< 0.001	< 0.0002	1.24
	2-Jun-16	< 0.001	0.074	0.05	< 0.001	< 0.002	< 0.01	< 0.005	< 0.1	< 0.001	0.03	< 0.0002	< 0.02	< 0.001	< 0.0002	1.66
	8-Sep-16	< 0.001	0.078	0.05	< 0.001	< 0.002	< 0.01	< 0.005	0.1	< 0.001	0.04	< 0.0002	< 0.02	< 0.001	< 0.0002	2.85
MP-22	1-Dec-16	< 0.001	0.086	0.05	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.1	< 0.001	0.03	< 0.0002	< 0.02	< 0.001	< 0.0002	1.08
(Downgradient)	2-Mar-17	< 0.001	0.079	0.05	< 0.001	< 0.0002	< 0.01	< 0.005	0.1	< 0.001	0.03	< 0.0002	< 0.02	< 0.001	< 0.0002	1.96
, ,	1-Jun-17	< 0.001	0.082	0.05	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.2	< 0.001	0.03	< 0.0002	< 0.02	< 0.001	< 0.0002	1.26
	30-Aug-17	< 0.001	0.088	0.04	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.1	< 0.001	0.03	< 0.0002	< 0.02	< 0.001	< 0.0002	4.24
	24-May-18	< 0.001	0.091	0.04	< 0.001	< 0.002	< 0.01	< 0.005	< 0.5	< 0.001	0.04	< 0.0002	< 0.02	< 0.001	< 0.0002	0.57
	29-Aug-18	Not Analyzed	0.087	0.04	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.04	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.87
	29-Dec-15	< 0.001	0.068	0.02	< 0.001	< 0.002	< 0.01	< 0.005	< 0.5	< 0.001	0.12	< 0.0002	< 0.02	< 0.001	< 0.0002	0.35
	2-Mar-16	< 0.001	0.069	0.02	< 0.001	< 0.002	< 0.01	< 0.005		< 0.001	0.12	< 0.0002	< 0.02	< 0.001	< 0.0002	2.72
	2-Jun-16	< 0.001	0.079	0.02	< 0.001	< 0.002	< 0.01	< 0.005		< 0.001	0.10	< 0.0002	< 0.02	< 0.001	< 0.0002	2.10
	8-Sep-16	< 0.001	0.069	0.02	< 0.001	< 0.002	< 0.01	< 0.005	0.5	< 0.001	0.11	< 0.0002	< 0.02	< 0.001	< 0.0002	3.20
MP-23	1-Dec-16	< 0.001	0.070	0.02	< 0.001	< 0.0002	< 0.01	< 0.005	0.1	< 0.001	0.10	< 0.0002	< 0.02	< 0.001	< 0.0002	0.98
(Downgradient)	2-Mar-17	< 0.001	0.066	0.03	< 0.001	< 0.0002	< 0.01	< 0.005	0.2	< 0.001	0.10	< 0.0002	< 0.02	< 0.001	< 0.0002	0.36
(20gradient)	1-Jun-17	< 0.001	0.070	0.03	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.2	< 0.001	0.10	< 0.0002	< 0.02	< 0.001	< 0.0002	1.75
	30-Aug-17	< 0.001	0.067	0.02	< 0.001	< 0.0002	< 0.01	< 0.005	< 0.1	< 0.001	0.09	< 0.0002	< 0.02	< 0.001	< 0.0002	2.43
	24-May-18	< 0.001	0.067	0.03	< 0.001	< 0.002	< 0.01	< 0.005	< 0.5	< 0.001	0.10	< 0.0002	< 0.02	< 0.001	< 0.0002	1.15
	29-Aug-18	Not Analyzed	0.078	0.03	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	0.09	Not Analyzed	Not Analyzed	Not Analyzed		1.86
	23 Aug-10	NOT Allalyzeu	0.070	0.03	140t Allalyzeu	140t Allalyzeu	NOT Allalyzed	140t Allalyzeu	Not Analyzed	140t Allalyzeu	0.05	NOT Allalyzeu	140t Allalyzeu	140t Allalyzeu	140t Analyzeu	1.00

Notes

- 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru Aug. 2017) of groundwater sampling data for Well MP-20.
- 3. As indicated, Groundwater Protection Standards are either published MCLs or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value is used.

Table 3 New Castle Generating Station Ash Landfill--Groundwater Analytical Data CCR Appendix III Constituents

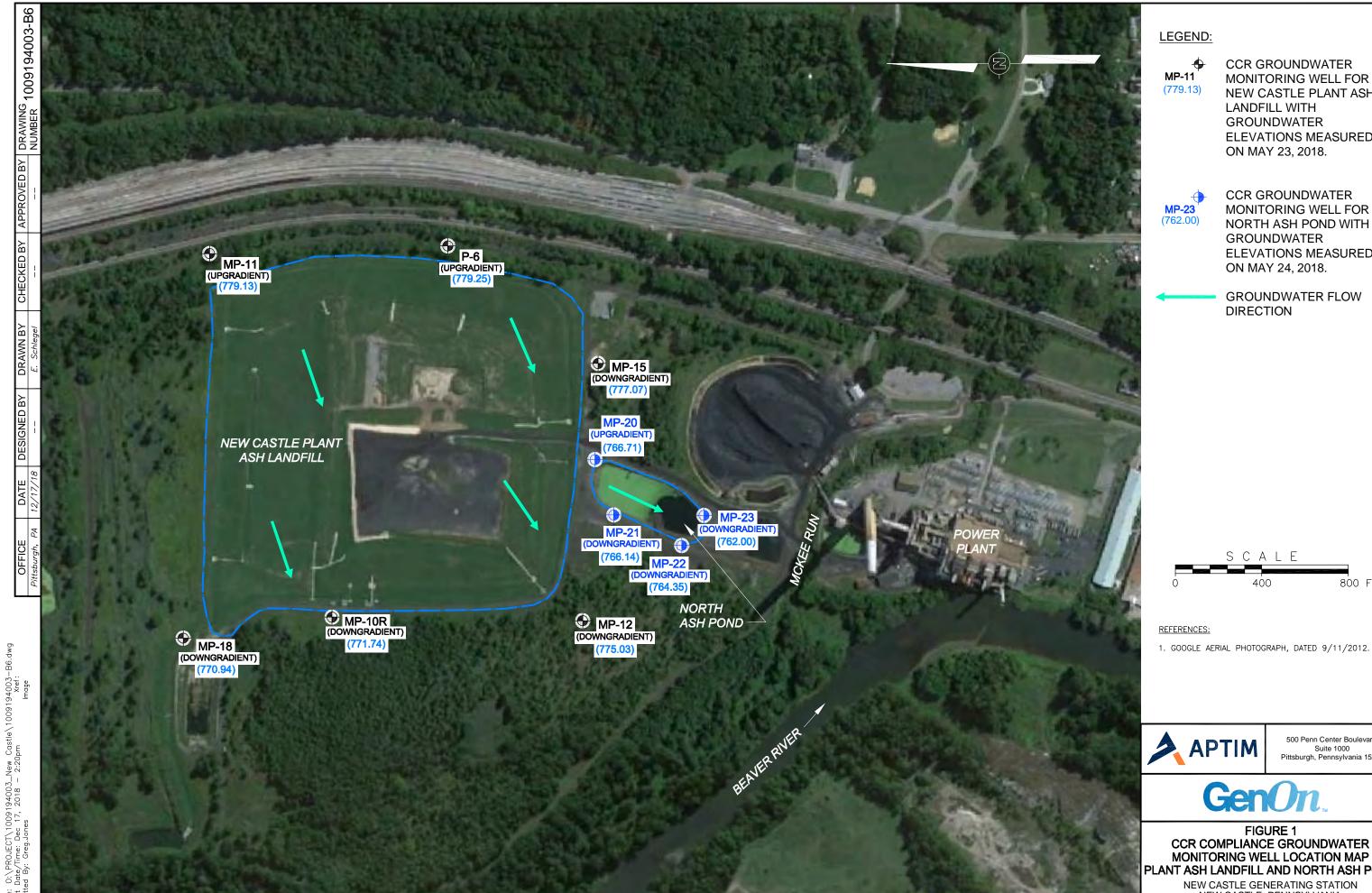
Monitoring Well	Date Sampled	Groundwater Elevation	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)
		(ft. MSL)	0.30	217	Ca 50	Iculated Background 0.1	980	454	6.04-7.96
	30-Dec-15	776.93	0.05	146	36	< 0.1	922	425	7.47
	1-Mar-16	778.21	0.09	173	31	< 0.1	842	410	7.39
	1-Jun-16	777.77	0.15	178	27	< 0.1	890	385	7.29
	7-Sep-16	776.00	0.07	169	33	0.1	980	380	7.33
	30-Nov-16	776.24	0.08	167	33	0.1	872	390	7.43
MP-11	1-Mar-17	778.54	0.34	187	26	< 0.1	880	371	7.35
(Upgradient)	31-May-17	778.75	0.09	192	25	0.1	838	381	7.03
	29-Aug-17	776.66	0.08	178	48	0.1	916	408	7.11
	10-Oct-17	776.06	0.07	178	39	< 0.1	916	392	6.90
	23-May-18	779.13	0.08	187	27	0.1	806	365	7.07
	28-Nov-18	780.14	0.09	172	29	< 0.1	900	389	6.77
	30-Dec-15	777.39	0.11	126	19	< 0.1	622	297	6.69
	1-Mar-16	777.65	0.13	146	26	< 0.1	602	322	6.65
	1-Jun-16	777.93	0.11	129	19	< 0.1	618	302	6.63
	7-Sep-16	776.38	0.12	136	21	< 0.1	620	306	6.58
P-6	30-Nov-16	776.97	0.12	141	19	< 0.1	614	297	6.56
(Upgradient)	1-Mar-17	778.64	0.12	135	20	< 0.1	614	305	6.60
(0 pg. aa.c)	31-May-17	778.64	0.11	146	22	< 0.1	606	316	6.42
	29-Aug-17	777.17	0.12	138	22	< 0.1	644	327	6.52
	10-Oct-17	776.67	0.12	139	21	< 0.1	620	320	6.62
	23-May-18	779.25	0.12	154	20	< 0.1	614	301	6.46
	28-Nov-18	779.95	0.12	142	24	< 0.1	656	342	6.32
	30-Dec-15	768.89	9.62	294	24	< 0.1	1650	853	6.02
	1-Mar-16	769.63	9.55	330	26	< 0.1	1510	784	6.14
	1-Jun-16	768.79	7.95	226	20	< 0.1 < 0.1	1250	609	5.90
	7-Sep-16 30-Nov-16	764.97 766.49	10.9 12.7	352	31 34	< 0.1 < 0.1	1730 1670	817	6.05
MP-10R	1-Mar-17	769.79	12.7	330 285	37	< 0.1	1450	824 797	6.10 6.17
(Downgradient)	31-May-17	770.70	5.47	212	23	< 0.1	1010	474	6.01
	29-Aug-17	766.48	10.1	254	27	< 0.1	1300	625	6.06
	10-Oct-17	765.37	12.5	296	31	< 0.1	1550	742	6.10
	23-May-18	771.74	3.06	156	8	< 0.1	592	212	6.00
	28-Nov-18	772.33	4.85	212	17	< 0.1	906	415	6.01
	30-Dec-15	772.05	4.96	573	14	< 0.5	4320	2560	6.61
	1-Mar-16	772.56	4.38	594	11	< 1.0	3640	1970	6.55
	1-Jun-16	772.38	3.63	482	11	< 1.0	3780	2140	6.54
	7-Sep-16	769.74	5.35	600	14	< 1	4420	2490	6.50
MD 12	30-Nov-16	770.29	4.32	600	12	< 0.5	4030	1950	6.53
MP-12	1-Mar-17	772.65	4.19	582	16	0.2	4040	2380	6.60
(Downgradient)	31-May-17	773.85	2.59	569	14	< 0.2	3300	1780	6.18
	29-Aug-17	771.16	3.94	589	18	< 0.5	4600	2760	6.31
	10-Oct-17	770.36	4.43	585	14	< 0.1	4490	1920	6.38
	23-May-18	775.03	0.63	58	2	0.2	258	115	5.62
	28-Nov-18	775.26	1.26	175	5	0.2	1160	666	6.20
	30-Dec-15	773.86	1.13	638	7	< 0.1	2340	1150	6.68
	2-Mar-16	775.04	1.25	761	6	< 0.1	2310	1230	6.73
	2-Jun-16	773.54	1.22	645	6	< 0.1	2390	1180	6.62
	7-Sep-16	770.57	1.13	643	5	< 0.1	2320	1120	6.53
MP-15	30-Nov-16	772.62	1.06	585	6	< 0.1	2190	1060	6.61
(Downgradient)	1-Mar-17	775.78	1.20	670	7	< 0.1	2290	1210	6.48
	31-May-17	775.86 771.62	1.30 1.12	669 627	8 6	< 0.2 < 0.2	2420 2280	1120 1130	6.49 6.41
	29-Aug-17	771.62				< 0.2			
	9-Oct-17 23-May-18	771.11 777.07	1.09 1.10	620 699	5 4	< 0.1	2310 2330	990 1060	6.54 6.30
	29-Nov-18		1.10	715	5	< 0.1	2570	1260	6.39
	72-INOA-18	776.30	1.27	/15	5	\ U.1	23/0	1200	0.39

Table 3
New Castle Generating Station
Ash LandfillGroundwater Analytical Data
CCR Appendix III Constituents

	CCR Appendix III Constituents													
Monitoring Well	Date Sampled	Groundwater Elevation	(mg/I) (mg/I) (mg/I) (mg/I)				Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)					
	Janipieu	(ft. MSL)	Calculated Background											
			0.30	217	50	0.1	980	454	6.04-7.96					
	30-Dec-15	769.18	1.03	124	10	0.2	536	98	6.75					
	1-Mar-16	769.56	1.03	87	4	0.1	336	53	6.49					
	1-Jun-16	768.74	0.99	137	10	< 0.2	580	91	6.82					
	7-Sep-16	765.28	1.04	149	14	0.2	606	115	6.74					
MD 10	30-Nov-16	767.26	1.18	134	15	0.2	512	80	6.55					
MP-18	1-Mar-17	770.51	0.99	108	12	0.1	442	66	6.54					
(Downgradient)	31-May-17	770.28	0.80	66	5	0.1	252	33	5.93					
	29-Aug-17	767.09	1.06	144	12	0.2	520	59	6.74					
	10-Oct-17	766.96	1.15	136	9	0.1	518	68	6.69					
	23-May-18	770.94	0.58	49	2	< 0.1	192	18	5.88					
	28-Nov-18	771.42	0.85	71	3	0.1	294	37	5.99					

- Notes:

 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru Aug. 2017) of groundwater sampling data for Wells MP-11 and P-6.


Table 4 New Castle Generating Station Ash Landfill--Groundwater Analytical Data CCR Appendix IV Constituents

	CON Appendix to Constituents																				
		Total Antimony (mg/L)	Total Arsenic (mg/L)	Total Barium (mg/L)	Total Beryl (mg/L)		Total Cadmium (mg/L)	Total Chromium (mg/L)	-	otal Cobalt (mg/L)	Total Fluoride (mg/L)	Total (mg			l Lithium mg/L)	Total Mercury (mg/L)	M	Total lolybdenum (mg/L)	Total Selenium (mg/L)	Total Thallium (mg/L)	Total Radium-226 and 228 (pCi/L)
										Ca	alculated Backgroun	d						, ,,			
Monitoring Well	Date	0.001	0.007	0.17	0.001		0.002	0.01	Т	0.005	0.1	0.0	102	T	0.01	0.0002	Т	0.04	0.002	0.0002	1.96
	Sampled	0.001	0.007	0.17	0.001		0.002	0.01			water Protection St				0.01	0.0002		0.04	0.002	0.0002	1.50
		NACI	PAC!	MCI	NAC!		MCI	MCI	T			1	<u> </u>	T	DCI	NAC!	1	DCI	NACI	DAC!	NACI
		MCL	MCL	MCL	MCL		MCL	MCL	-	RSL	MCL	RS			RSL	MCL		RSL	MCL	MCL	MCL
		0.006	0.01	2	0.004		0.005	0.1		0.006	4.0	0.0	15		0.04	0.002		0.10	0.05	0.002	5
	30-Dec-15	< 0.001	0.001	0.04	< 0.00	1	< 0.002	< 0.01	<	0.005	< 0.1	< 0.	.001	<	0.01	< 0.0002	<	0.02	0.002	< 0.0002	1.39
	1-Mar-16	< 0.001	0.001	0.04	< 0.00		< 0.002	< 0.01	<	0.005	< 0.1	1	.001	<	0.01	< 0.0002	<	0.02	0.002	< 0.0002	0.30
	1-Jun-16	< 0.001	< 0.001	0.04	< 0.00		< 0.002	< 0.01	<	0.005	< 0.1	1	.001	<	0.01	< 0.0002	<	0.02	0.002	< 0.0002	1.06
MP-11	7-Sep-16	< 0.001	< 0.001	0.04	< 0.00		< 0.002	< 0.01	<	0.005	0.1	-	0.001	<	0.01	< 0.0002	<	0.02	0.001	< 0.0002	0.88
(Upgradient)	30-Nov-16	< 0.001	< 0.001	0.04	< 0.00		< 0.002	< 0.01	<	0.005	0.1	1	0.001	<	0.01	< 0.0002	<	0.02	0.002	< 0.0002	-0.13
	1-Mar-17	< 0.001	0.001	0.04	< 0.00		< 0.0002	< 0.01	<	0.005	< 0.1	1	0.001	<	0.01	< 0.0002		0.04	0.002	< 0.0002	0.65
	31-May-17 29-Aug-17	< 0.001 < 0.001	0.003 0.001	0.04 0.04	< 0.00		< 0.0002 < 0.0002	< 0.01 < 0.01	<	0.005	0.1		0.001	<	0.01	< 0.0002 < 0.0002	<	0.02	0.001 0.002	< 0.0002 < 0.0002	0.47 1.21
	30-Dec-15	< 0.001	0.001	0.04	< 0.00		< 0.0002	< 0.01	_	0.005	< 0.1		0.001		0.01	< 0.0002	_	0.02	< 0.002	< 0.0002	0.76
	1-Mar-16	< 0.001	0.004	0.17	< 0.00		< 0.002	< 0.01	<	0.005	< 0.1		0.001	<	0.01	< 0.0002	_	0.02	< 0.001	< 0.0002	0.76
	1-Jun-16	< 0.001	0.002	0.11	< 0.00		< 0.002	< 0.01	<	0.005	< 0.1	1	0.001	-	0.01	< 0.0002	~	0.02	< 0.001	< 0.0002	0.75
P-6	7-Sep-16	< 0.001	0.002	0.11	< 0.00		< 0.002	< 0.01	<	0.005	< 0.1		0.001	<	0.01	< 0.0002	<	0.02	< 0.001	< 0.0002	1.80
(Upgradient)	30-Nov-16	< 0.001	0.002	0.11	< 0.00		< 0.002	< 0.01	<	0.005	< 0.1	1	.001	<	0.01	< 0.0002	<	0.02	< 0.001	< 0.0002	0.89
, ,	1-Mar-17	< 0.001	0.002	0.11	< 0.00		< 0.0002	< 0.01	<	0.005	< 0.1	1	.001	<	0.01	< 0.0002	<	0.02	< 0.001	< 0.0002	0.42
	31-May-17	< 0.001	0.007	0.14	< 0.00	1	< 0.0002	< 0.01	<	0.005	< 0.1	1	.002	<	0.01	< 0.0002	<	0.02	< 0.001	< 0.0002	1.11
	29-Aug-17	< 0.001	0.003	0.10	< 0.00	1	< 0.0002	< 0.01	<	0.005	< 0.1	< 0.	.001	<	0.01	< 0.0002	<	0.02	< 0.001	< 0.0002	0.54
	30-Dec-15	< 0.001	0.002	0.04	< 0.00	1	< 0.002	< 0.01		0.034	< 0.1	< 0.	.001		0.56	< 0.0002	<	0.02	< 0.001	< 0.0002	1.70
	1-Mar-16	< 0.001	0.002	0.03	< 0.00	1	< 0.002	< 0.01		0.032	< 0.1	< 0.	.001		0.54	< 0.0002	<	0.02	< 0.001	< 0.0002	0.66
	1-Jun-16	< 0.001	0.002	0.03	< 0.00	1	< 0.002	< 0.01		0.024	< 0.1	< 0.	.001		0.40	< 0.0002	<	0.02	< 0.001	< 0.0002	1.16
MP-10R	7-Sep-16	< 0.001	0.001	0.04	< 0.00	1	< 0.002	< 0.01		0.033	< 0.1	< 0.	.001		0.51	< 0.0002	<	0.02	< 0.001	< 0.0002	1.68
(Downgradient)	30-Nov-16	< 0.001	0.002	0.03	< 0.00		< 0.002	< 0.01		0.030	< 0.1	1	.001		0.55	< 0.0002	<	0.02	< 0.001	< 0.0002	0.37
	1-Mar-17	< 0.001	0.002	0.03	< 0.00		0.0005	< 0.01		0.028	< 0.1	1	.001	1	0.40	< 0.0002	<	0.02	< 0.001	< 0.0002	1.22
	31-May-17	< 0.001	0.001	0.02	< 0.00		0.0006	< 0.01		0.016	< 0.1	1	0.001		0.17	< 0.0002	<	0.02	< 0.001	< 0.0002	1.13
	29-Aug-17	< 0.001	0.002	0.03	< 0.00		0.0005	< 0.01		0.021	< 0.1		0.001	-	0.30	< 0.0002	<	0.02	< 0.001	< 0.0002	1.35
	30-Dec-15	< 0.001	4.14	0.03	< 0.00		< 0.0002	< 0.01	<	0.005	< 0.5	1	0.001	+	2.54	< 0.0002		0.03	< 0.001	0.0009	0.56
	1-Mar-16 1-Jun-16	< 0.001 < 0.001	3.60 2.96	0.02 0.02	< 0.00		< 0.0002 < 0.0002	< 0.01 < 0.01	<	0.005	< 1.0 < 1.0	1	0.001		2.24 1.82	< 0.0002 < 0.0002		0.02	< 0.001 < 0.001	0.0007 0.0009	0.34 0.00
MP-12	7-Sep-16	< 0.001	4.91	0.02	< 0.00		< 0.0002	< 0.01	_	0.005	< 1.0	1	0.001		2.60	< 0.0002	<u> </u>	0.02	< 0.001	0.0009	0.47
(Downgradient)	30-Nov-16	< 0.001	4.59	0.02	< 0.00		< 0.0002	< 0.01		0.008	< 0.5	1	0.001		2.43	< 0.0002		0.03	< 0.001	0.0004	0.39
(Downgradient)	1-Mar-17	< 0.001	3.98	0.02	< 0.00		< 0.0002	< 0.01	<	0.005	0.2	-	0.001	1	1.95	< 0.0002		0.03	< 0.001	0.0003	-0.03
	31-May-17	< 0.001	1.54	0.03	< 0.00		0.0004	< 0.01		0.007	< 0.2	1	.001		1.31	< 0.0002	<	0.02	0.005	0.0014	0.78
	29-Aug-17	< 0.001	4.07	0.02	0.00		< 0.0002	< 0.01		0.007	< 0.5	1	.001		2.25	< 0.0002	<	0.02	0.001	0.0006	1.00
	30-Dec-15	< 0.001	0.069	0.02	< 0.00	1	< 0.002	< 0.01	<	0.005	< 0.1	< 0.	.001		0.06	< 0.0002		0.04	< 0.001	0.0019	0.52
	2-Mar-16	< 0.001	0.226	0.02	< 0.00	1	< 0.002	< 0.01	<	0.005	< 0.1	< 0.	.001		0.06	< 0.0002	<	0.02	< 0.001	0.0010	0.74
	2-Jun-16	< 0.001	0.208	0.02	< 0.00	1	< 0.002	< 0.01	<	0.005	< 0.1	< 0.	.001		0.06	< 0.0002		0.02	< 0.001	0.0012	1.35
MP-15	7-Sep-16	< 0.001	0.491	0.03	< 0.00	1	< 0.002	< 0.01		0.008	< 0.1	< 0.	.001		0.10	< 0.0002		0.12	< 0.001	0.0025	1.22
(Downgradient)	30-Nov-16	< 0.001	0.372	0.03	< 0.00		< 0.002	< 0.01	<	0.005	< 0.1	1	.001	1	0.08	< 0.0002		0.09	< 0.001	0.0036	0.46
	1-Mar-17	< 0.001	0.097	0.02	< 0.00		< 0.0002	< 0.01		0.005	< 0.1		.001	1	0.06	< 0.0002		0.04	< 0.001	0.0017	0.53
	31-May-17	< 0.001	0.136	0.02	< 0.00		< 0.0002	< 0.01	<	0.005	< 0.2	1	.001	1	0.05	< 0.0002	-	0.02	< 0.001	0.0013	0.56
	29-Aug-17	< 0.001	0.307	0.02	< 0.00		< 0.0002	< 0.01	<	0.005	< 0.2		.001		0.07	< 0.0002		0.05	< 0.001	0.0019	0.71
	30-Dec-15	< 0.001	0.020	0.08	< 0.00		< 0.002	< 0.01	<	0.005	0.2	1	0.001		0.05	< 0.0002	<	0.02	0.025	0.0017	0.98
	1-Mar-16	0.001	0.025	0.11	< 0.00		< 0.002	< 0.01	<	0.005	0.1	1	0.001	+	0.13	< 0.0002	1	0.04	0.079	0.0041	0.36
MP-18	1-Jun-16	< 0.001	0.018	0.05	< 0.00		< 0.002	< 0.01	<	0.005	< 0.2	1	0.001	<	0.01	< 0.0002	<	0.02	0.002	0.0003	1.33
	7-Sep-16 30-Nov-16	< 0.001 < 0.001	0.017 0.017	0.05 0.08	< 0.00		< 0.002 < 0.002	< 0.01 < 0.01	<	0.005	0.2	1	0.001	+	0.01	< 0.0002 < 0.0002		0.02	0.001 0.009	0.0002 0.0008	1.39 0.61
(Downgradient)	1-Mar-17	< 0.001	0.017	0.08	< 0.00		< 0.002	< 0.01	<	0.005	0.2		0.001	+	0.05	< 0.0002	+	0.02	0.009	0.0008	1.19
	31-May-17	0.001	0.003	0.08	< 0.00		< 0.0002	< 0.01	<	0.005	0.1	1	0.001	+	0.10	< 0.0002	+	0.02	0.037	0.0017	0.72
	29-Aug-17	< 0.004	0.003	0.11	< 0.00		< 0.0002	< 0.01	<	0.005	0.1		0.001	<	0.10	< 0.0002	<	0.03	0.001	0.0031	1.33
	23 Aug-1/	. 0.001	0.000	0.07	` 0.00	-	· 0.0002	- 0.01	_ `	0.003	U.Z	` 0.		<u> </u>	0.01	· 0.0002		0.02	0.001	0.0007	1.55

Notes

- 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. Background values based on statistical evaluation of initial eight rounds (Dec. 2015 thru Aug. 2017) of groundwater sampling data for Wells MP-11 and P-6.
- 3. As indicated, Groundwater Protection Standards are either published MCLs or risk-based Regional Screening Levels (RSLs). For constituents where calculated background exceeds either the MCL or RSL, the background value is used.

CCR GROUNDWATER MONITORING WELL FOR NEW CASTLE PLANT ASH **GROUNDWATER ELEVATIONS MEASURED** ON MAY 23, 2018.

CCR GROUNDWATER MONITORING WELL FOR NORTH ASH POND WITH **ELEVATIONS MEASURED**

GROUNDWATER FLOW

500 Penn Center Boulevard, Suite 1000 Pittsburgh, Pennsylvania 15235

CCR COMPLIANCE GROUNDWATER
MONITORING WELL LOCATION MAP
PLANT ASH LANDFILL AND NORTH ASH POND

NEW CASTLE GENERATING STATION NEW CASTLE, PENNSYLVANIA

CCR COMPLIANCE ALTERNATE SOURCE DEMONSTRATION APPENDIX III GROUNDWATER EVALUATION OF A STATISTICALLY SIGNIFICANT INCREASE AT THE NEW CASTLE PLANT ASH LANDFILL

Prepared for:

NRG Power Midwest LP New Castle Generating Station West Pittsburg, Pennsylvania

Prepared by:

Aptim Environmental & Infrastructure, Inc. St. Charles, Illinois

April 2018

Table of Contents _____

List of Tables	ii
List of Figures	ii
List of Appendices	ii
1.0 Introduction	
2.0 Background	
3.0 Geochemical Comparison	<u></u>
4.0 Alternate Source Identification and Conclusions	
5.0 Professional Engineer's Certification	-

Tables

Figures

Appendices

List of Tables _____

Table 1	Groundwater Analytical Data (4th Quarter 2017)
Table 2	Landfill Leachate Analytical Data (September 2017)
Table 3	Historical Groundwater Analytical Data (2015 - 2017)

List of Figures _____

Figure 1	Site Location Map
Figure 2	Leachate Collection and Detection Systems Layout
Figure 3	Leachate Collection and Detection Systems As-Built
Figure 4	Ternary Diagram
Figure 5	Boron Concentrations Graph
Figure 6	Groundwater Elevation Contour Map (4th Quarter 2017)

List of Appendices______

Appendix A Leachate Detection System Monitoring Documentation (2015 - 2017)

Appendix B Boring Logs/Well Construction Details

1.0 Introduction

Title 40 Code of Federal Regulations (CFR) §257.90 mandates that existing Coal Combustion Residuals (CCR) landfills, also known as CCR units, be subject to groundwater monitoring and corrective action requirements as further detailed in §257.91 through §257.98. These requirements are part of the overall CCR Rule (or Rule) which was published in the Federal Register on April 17, 2015 and which became effective on October 19, 2015. Specific obligations for Owners and Operators of existing CCR units regarding the requirements for groundwater sampling as part of the CCR Detection Monitoring Program are outlined in §257.94.

The New Castle Generating Station, operated by NRG Power Midwest LP, a subsidiary of GenOn Energy, Inc. (GenOn), is a coal-fired power plant located in West Pittsburg, Pennsylvania. The Rule applies to this facility due to the management/disposal of CCR materials that are generated from the combustion of coal. CCR units associated with station operations include the New Castle Plant Ash Landfill and the North Bottom Ash Pond (not the subject of this current document). However, the management/placement of CCR materials in both units has been significantly curtailed since the transition from coal to natural gas firing was effected in mid-2016. The Ash Landfill has a dedicated groundwater monitoring system that was originally installed to comply with Commonwealth of Pennsylvania Residual Waste Regulations, and was subsequently adopted for use under the CCR program.

In accordance with §257.94(b), groundwater sampling in support of the CCR Detection Monitoring Program was conducted during the 4th quarter of 2017 at the New Castle Plant Ash Landfill. Samples were collected on October 9-10, 2017, and subsequently analyzed for CCR Appendix III constituents only. The analytical data from this sampling event has served as the first point of comparison to determine if concentrations in any of the downgradient wells are at levels representing a statistically significant increase (SSI) over background concentrations established in the upgradient wells. Results from the October 2017 sampling event showed multiple Appendix III constituents at levels above background in several downgradient monitoring wells. These constituents included boron, calcium, sulfate, and total dissolved solids.

Following additional review of the data and preliminary consideration of the results as SSIs, a determination was made on January 15, 2018 to conduct an Alternate Source Demonstration per §257.94(e)(2), which includes provisions such that:

"The owner or operator may demonstrate that a source other than the CCR unit caused the statistically significant increase over background levels for a constituent or that the statistically significant increase resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality."

Accordingly, this Alternate Source Demonstration (ASD) has been prepared to satisfy the requirements of §257.94(e)(2), and which further stipulates that the ASD must be completed within 90 days of detecting a SSI(s) above background and be certified by a qualified professional engineer. If a successful ASD is completed, then sampling under the CCR Detection Monitoring program may continue for the unit. The ASD must also be included in the Annual Groundwater Monitoring and Corrective Action Report [per §257.90(e)] that must be prepared by January 31 of each year. If at the end of the 90-day period the ASD is proven unsuccessful, the owner or operator of the affected CCR unit must then initiate an Assessment Monitoring Program per §257.95.

2.0 Background

The Ash Landfill is situated north of the main generating station (refer to Figure 1). Prior to landfill development in this portion of the property, an impoundment existed (occupying an area of approximately 120 acres) that was used for the disposal of sluiced fly ash and bottom ash; these operations took place from approximately 1939 to 1978. From 1978 to 1984 and following the installation of electrostatic precipitators at the station, "dry" fly ash was disposed on the dewatered impoundment area. Beginning in 1984, CCR materials (including "dry" fly ash and dredged bottom ash) were placed in this area.

In 1997, the Pennsylvania Department of Environmental Protection (PADEP) issued Solid Waste Permit No. 300818 for the Ash Landfill, addressing Stages 1, 2, and 3A. These stages are not part of the current monitored/regulated unit. In April 2008, a permit modification was issued for Stages 4, 5, 6, and 7, which together comprise a vertical expansion of the Ash Landfill over top of the previously permitted stages.

From 2008 through 2010, approximately 16.8 acres of layover liner system (liner between Stages 4 and underlying Stages 1, 2, and 3A) was placed at the base of Stage 4. Approximately 17.9 acres of final cover cap liner system was installed over the lower landfill slopes (southern and eastern perimeters) in 2008/2009; approximately 11.6 acres installed over Stage 1, 2, and/or 3A beneath the area designated for Stage 5 (not active) in 2010; and approximately 10.2 acres installed over Stage 1, 2, and/or 3A beneath the area designated for Stage 6 (not active) in 2013. Therefore, Stages 1, 2, and 3A were entirely capped and/or closed by 2013 with the layover liner system installation in Stage 4 and final cover cap placement in the areas designated for Stages 5 and 6. Stage 4 currently remains as the active disposal area.

Design features of the layover liner system created from 2008 through 2010 include a leachate collection system and a leachate detection system (refer to Figures 2 and 3). The leachate collection system captures and diverts leachate from the regulated unit to the Leachate Pond located northwest of the landfill. The leachate detection system is located beneath the leachate collection system and collects/detects any leakage of the leachate collection system above.

Groundwater associated with the Ash Landfill is monitored by upgradient wells MP-11 and P-6 and downgradient wells MP-10R, MP-12, MP-15, and MP-18 (see Figure 1). As previously noted, analytical results from the October 2017 Detection Monitoring event indicated that several Appendix III constituents exceeded the established background levels.

Specifically and as shown in Table 1, Boron exceeded background (0.30 mg/L) at monitoring wells MP-10R, MP-12, MP-15, and MP-18 (12.5, 4.43, 1.09, and 1.15 mg/L, respectively). Calcium exceeded background (217 mg/L) at monitoring wells MP-10R, MP-12, and MP-15 (296,

585, and 620 mg/L, respectively). Sulfate exceeded background (454 mg/L) at monitoring wells MP-10R, MP-12, and MP-15 (742, 1,920, and 990 mg/L, respectively). Total dissolved solids exceeded background (980 mg/L) at monitoring wells MP-10R, MP-12, and MP-15 (1,550, 4,490, and 2,310 mg/L, respectively).

3.0 Geochemical Comparison

Utilizing the data from the October 2017 groundwater sampling event, a geochemical comparison was performed to assist in determining if the SSIs at monitoring wells MP-10, MP-12R, MP-15, and MP-18 originated from the Ash Landfill or from an alternate source. In this regard, a Ternary diagram was created to help compare analytical data from the monitoring wells to leachate from the Ash Landfill. Ternary diagrams graphically depict the ratios of three variables as positions in an equilateral triangle; for the current analysis, these variables include the measured concentrations of Boron, Chloride, and Sulfate. The Ternary diagram for the Ash Landfill (refer to Figure 4) includes the October 2017 groundwater data along with landfill leachate data (refer to Table 2) generated from September 2017 analysis of the Leachate Pond influent (associated with NPDES-permitted Outfall 009).

Review of the Ternary diagram indicates that the geochemical composition of downgradient monitoring wells MP-10R, MP-12, MP-15, and MP-18 is similar to that of the landfill leachate collected from the Leachate Pond. From this observation, one would anticipate a "connection" between the downgradient groundwater monitoring wells and the landfill leachate. However, routine monitoring of the landfill leachate detection system (as required by State of Pennsylvania Residual Waste Regulations) has consistently shown "no flow" as reflected by the documentation in Appendix A. Accordingly, since this system has not detected any leachate potentially leaking into the groundwater below the regulated unit, it can be reasonably concluded that the downgradient monitoring wells are being impacted by an alternate source that is similar to the regulated unit.

A final point on the Ternary diagram is the comparison of boron, which is a recognized component of coal ash and considered to be a very mobile indicator parameter as such. Groundwater impacted by coal ash generally contains elevated levels of boron. Collective analytical data (presented in Tables 1, 2, and 3) show elevated levels of boron within the leachate (as expected) and, to a lesser extent, in the downgradient groundwater monitoring wells. These results, which are depicted on Figure 5, further indicate that the elevated levels of Appendix III constituents in monitoring wells MP-10R, MP-12, MP-15, and MP-18 are from an alternate source that is again similar to the regulated unit. Also, the historical analytical data for monitoring wells MP-10R, MP-12, MP-15, and MP-18 are relatively constant (refer to Table 3). If there were a leak in the regulated unit, beyond leachate being detected in the leachate detection system, there would be spikes in the analytical data for the downgradient wells compared with historical data.

4.0 Alternate Source Identification and Conclusions

Based on review of boring logs/well construction details (Appendix B), it is acknowledged that the upgradient and downgradient groundwater monitoring wells for the Ash Landfill are screened in the uppermost aquifer; however, only the upgradient wells (Wells MP-11 and P-6) are screened in relatively undisturbed/native soils. The downgradient groundwater monitoring wells (MP-10R, MP-12, MP-15, and MP-18) are generally located within the boundaries of the historic 120-acre ash impoundment, with the screened intervals of two of these wells (MP-12 and MP-15) being situated entirely within ash. Not coincidentally, these two wells showed the highest values above background for the majority of the Appendix III constituents. For reference, groundwater contours and flow direction in the uppermost aquifer beneath the Ash Landfill are shown on Figure 6. From Figure 6, it is observed that the two wells with the most elevated groundwater concentrations (MP-12 and MP-15) are not located in the directly downgradient position from the Ash Landfill, and which again suggests a source other than the regulated unit.

From the information above and that presented in previous sections of this report, the Appendix III SSIs for boron, calcium, fluoride, sulfate, and total dissolved solids reported at monitoring wells MP-10R, MP-12, MP-15, and MP-18 during the October 2017 Detection Monitoring event have resulted from a source other than the Ash Landfill. Being that the materials (ash) within and contained by the regulated unit are similar to those within the historic 120-acre ash impoundment, it is not unexpected that the geochemical composition of the regulated unit's leachate and the groundwater in contact with the underlying 120-acre ash impoundment are also similar (refer to Figure 4).

Regardless, several pieces of compelling evidence have emerged during the course of this demonstration study. Most notably, these include the fact that flow within the Ash Landfill's leachate detection system has never been observed (documentation in Appendix A); that the downgradient monitoring wells (MP-12 and MP-15) with the highest Appendix III constituent concentrations were screened entirely within ash associated with the historical impoundment; and that those same monitoring wells were less hydraulically downgradient than the other downgradient monitoring wells. Collectively, this evidence points to the historic 120-acre ash impoundment which underlies and surrounds the existing Ash Landfill CCR unit, as being the source of the elevated Appendix III concentrations in the downgradient monitoring wells. Commensurate with this conclusion, the SSIs from the October 2017 Detection Monitoring event are deemed not to be in association with the New Castle Plant Ash Landfill. Accordingly, and per \$257.94(e)(2), Detection Monitoring for the regulated unit will continue on the minimum semiannual frequency as outlined in \$257.94(b).

5.0 Professional Engineer's Certification

In accordance with §257.94(e)(2) of the Rule, I hereby certify based on a review of the information contained herein, that the technical and investigatory methods utilized in this Alternate Source Demonstration Report are accurate and appropriate. These methods' application have provided the necessary evidence to conclude that the New Castle Plant Ash Landfill is not the source of the SSIs observed during the October 2017 Detection Monitoring event.

Certified by:

Richard Southorn, P.E., P.G., CPSWQ

Professional Engineer Registration No. PE 085411

Aptim Environmental & Infrastructure, Inc.

Date: April 10, 2018

Table 1 CCR Appendix III Constituents (4th Quarter 2017) New Castle Plant Ash Landfill

Monitoring Well	Date	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Total Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)
	Sampled			Calc	ulated Background			
		0.30	217	50	0.1	980	454	6.04-7.96
	30-Dec-15	0.05	146	36	< 0.1	922	425	7.47
	1-Mar-16	0.09	173	31	< 0.1	842	410	7.39
	1-Jun-16	0.15	178	27	< 0.1	890	385	7.29
MP-11	7-Sep-16	0.07	169	33	0.1	980	380	7.33
(Upgradient)	30-Nov-16	0.08	167	33	0.1	872	390	7.43
	1-Mar-17	0.34	187	26	< 0.1	880	371	7.35
	31-May-17	0.09	192	25	0.1	838	381	7.03
	29-Aug-17	0.08	178	48	0.1	916	408	7.11
	30-Dec-15	0.11	126	19	< 0.1	622	297	6.69
	1-Mar-16	0.13	146	26	< 0.1	602	322	6.65
	1-Jun-16	0.11	129	19	< 0.1	618	302	6.63
P-6	7-Sep-16	0.12	136	21	< 0.1	620	306	6.58
(Upgradient)	30-Nov-16	0.12	141	19	< 0.1	614	297	6.56
	1-Mar-17	0.12	135	20	< 0.1	614	305	6.60
	31-May-17	0.11	146	22	< 0.1	606	316	6.42
	29-Aug-17	0.12	138	22	< 0.1	644	327	6.52
MP-10R (Downgradient)	10-Oct-17	12.5	296	31	< 0.1	1550	742	6.10
MP-12 (Downgradient)	10-Oct-17	4.43	585	14	< 0.1	4490	1920	6.38
MP-15 (Downgradient)	9-Oct-17	1.09	620	5	< 0.1	2310	990	6.54
MP-18 (Downgradient)	10-Oct-17	1.15	136	9	0.1	518	68	6.69

⁼ Statistically Significant Increase (SSI) over Background.

Notes:

- 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. Background values based on statistical evaluation of initial eight rounds of groundwater sampling data.

TABLE 2 *ANALYSIS RESULTS TABLE POLLUTANT GROUP 1

Please read instructions carefully before completing this form.

APPLICANT NAME NRG F	ower Midwest	LP				· · ·				
☐ Outfall / IMP Number 00: ☐ Treatment Facility Influent ☐ Intake Sampling Results (☐ Background (Upstream) S ☐ New Discharge (Basis for	Sampling Resu Specify Source: ampling Results	lts (Show loca	tion of samplin	•	Drawing)					
•		CONCE	NTRATION / I	MASS PRESE						
POLLUTANT GROUP 1	Min/Max Daily Value		Max Avg Monthly Value		Long-Term Avg Value			No. "Non-		
PARAMETERS	Conc	Mass (lbs/day)	Conc	Mass (lbs/day)	Conc	Mass (Ibs/day)	No. Analyses	Detect" Results	QL Used	Method Used
BOD ₅ (mg/L)	<0.8	<0.004	<0.8	<0.004	<0.8	<0.004	1	1	0.8	SM 5210 B
COD (mg/L)	6.0*	0.03*	6.0*	0.03*	6.0*	0.03*	1	0	5.0	Hach 8000
TOC (mg/L)	1.1	0.0055	1.1	0.0055	1.1	0.0055	1	0	0.20	SM 5310 C
TSS (mg/L)	3.0	0.02	3.0	0.02	3.0	0.02	1	0	1.0	SM 2540 D
Ammonia-Nitrogen (mg/L)	<0.04	<0.0002	<0.04	<0.0002	<0.04	<0.0002	1	1	0.040	EPA 350.1
Temperature (Winter) (°F)		XXX		XXX		XXX	0	XXX	XXX	
Temperature (Summer) (°F)	61.5	XXX	61.5	XXX	61.5	XXX	1	XXX	XXX	SM 2550 B
pH – Minimum (S.U.)	7.99	XXX	XXX	XXX	7.99	XXX	1	XXX	XXX	SM4500H B
pH - Maximum (S.U.)	7.99	XXX	XXX	XXX	7.99	XXX	1	XXX	XXX	SM4500H B
Fecal Coliform (No./100 mL)		XXX		XXX		XXX	0		XXX	
Oil and Grease (mg/L)	<1.4	<0.007	<1.4	<0.007	<1.4	<0.007	1	1	1.4	EPA 1664
TRC (mg/L)	0.03	0.00015	0.03	0.00015	0.03	0.00015	1	0	0.01	SM 4500-CI G
Total Phosphorus (mg/L)	0.047	0.00023	0.047	0.00023	0.047	0.00023	1	0	0.005	EPA 200.7
TKN (mg/L)	<0.5	<0.0025	<0.5	<0.0025	<0.5	<0.0025	1	1	0.5	EPA 351.2
Nitrite + Nitrate-Nitrogen (mg/L)	1.5	0.008	1.5	0.008	1.5	0.008	1	0	0.020	EPA 353.2
Total Dissolved Solids (mg/L)	3,280	16	3,280	16	3,280	16	1	0	1.0	SM 2540 C
Color (Pt-Co Units)	15	XXX	15	XXX	15	XXX	1	0	5.0	SM 2120 B
Bromide (mg/L)	23.1	0.12	23.1	0.12	23.1	0.12	1	0	0.10	EPA 300.0
Chloride (mg/L)	80	0.40	80	0.40	80	0.40	1	0	0.20	EPA 300.0
Sulfate (mg/L)	1,550	7.76	1,550	7.76	1,550	7.76	1	0	0.50	EPA 300.0
Sulfide (mg/L)	<0.05	<0.0002	< 0.05	<0.0002	<0.05	<0.0002	1	1	0.05	SM 4500-S2-D
Surfactants (mg/L)	<0.02	<0.0001	<0.02	<0.0001	<0.02	<0.0001	1	1	0.020	SM 5540 C
Fluoride (mg/L)	0.1	0.0005	0.1	0.0005	0.1	0.0005	1	0	0.050	EPA 300.0
Total Hardness (mg/L)	2,160	11	2,160	11	2,160	11	1	0	0.50	EPA 200.7

TABLE 2 ANALYSIS RESULTS TABLE POLLUTANT GROUP 2

Please read instructions carefully before completing this form.

ADDI ICANT NAME	C Dower Midwoot	ı D								
	RG Power Midwest									
 ☐ Outfall / IMP Number ☐ Treatment Facility Infl ☐ Intake Sampling Resurement ☐ Background (Upstreat ☐ New Discharge (Basis 	uent Sampling Resu ults (Specify Source: m) Sampling Results	Its (Show locat) s (Specify Locat)	ion of samplin	ng point on Line	J,					
				MASS PRESEN						
POLLUTANT GROUP 2 PARAMETERS		Min/Max Daily Value		Max Avg Monthly Value		Long-Term Avg Value		No. "Non-		
	Conc	Mass (lbs/day)	Conc	Mass (lbs/day)	Conc	Mass (lbs/day)	No. Analyses	Detect" Results	QL Used	Method Used
Aluminum, Total (µg/L)	32.4	0.00016	32.4	0.00016	32.4	0.00016	1	0	2.0	EPA 200.8
Antimony, Total (µg/L)	39.9	0.00020	39.9	0.00020	39.9	0.00020	1	0	0.50	EPA 200.8
Arsenic, Total (µg/L)	122	0.00061	122	0.00061	122	0.00061	1	0	0.50	EPA 200.8
Barium, Total (µg/L)	27.6	0.00014	27.6	0.00014	27.6	0.00014	1	0	2.00	EPA 200.8
Beryllium, Total (µg/L)	<0.50	<0.000025	<0.50	<0.0000025	<0.50	<0.0000025	1	1	0.50	EPA 200.8
Boron, Total (µg/L)	63,400	0.32	63,400	0.32	63,400	0.32	1	0	10	EPA 200.7
Cadmium, Total (µg/L)	0.40	0.0000020	0.40	0.0000020	0.40	0.0000020	1	0	0.10	EPA 200.8
Chromium, Total (µg/L)	<2.00	<0.000010	<2.00	<0.000010	<2.00	<0.000010	1	1	2.00	EPA 200.8
Chromium, Hexavalent (µg	/L) <1.00	<0.00005	<1.00	<0.00005	<1.00	<0.00005	1	1	1.0	USGS I-1230-85
Cobalt, Total (µg/L)	<0.20	<0.000010	<0.20	<0.000010	<0.20	<0.000010	1	1	0.20	EPA 200.8
Copper, Total (µg/L)	0.8*	0.000004*	0.8*	0.000004*	0.8*	0.000004*	1	0	0.50	EPA 200.8
Cyanide, Total (µg/L)	<10	<0.0005	<10	<0.00005	<10	<0.00005	1	1	10	ASTM D7511
Iron, Total (μg/L)	82	0.00041	82	0.00041	82	0.00041	1	0	20.0	EPA 200.7
Iron, Dissolved (µg/L)	32*	0.00016*	32*	0.00016*	32*	<0.00016*	1	0	20.0	EPA 200.7
Lead, Total (µg/L)	<0.2	<0.000010	<0.2	<0.000010	<0.2	<0.000010	1	1	0.20	EPA 200.8
Manganese, Total (µg/L)	69.4	0.00035	69.4	0.00035	69.4	0.00035	1	0	5.00	EPA 200.8
Mercury, Total (µg/L)	<0.10	<0.000005	<0.10	<0.000005	<0.10	<0.000005	1	1	0.10	SM 3112B
Molybdenum, Total (µg/L)	5,780	0.029	5,780	0.029	5,780	0.029	1	0	0.50	EPA 200.8
Nickel, Total (µg/L)	6.5	0.000033	6.5	0.000033	6.5	0.000033	1	0	0.20	EPA 200.8
Phenols, Total (µg/L)	5.0*	0.000025*	5.0*	0.000025*	5.0*	0.000025*	1	0	5.00	EPA 420.4
Selenium, Total (µg/L)	129	0.00065	129	0.00065	129	0.00065	1	0	0.50	EPA 200.8
Silver, Total (µg/L)	<0.10	<0.000005	<0.10	<0.000005	<0.10	<0.000005	1	1	0.10	EPA 200.8
Thallium, Total (µg/L)	3.0	0.00002	3.0	0.00002	3.0	0.00002	1	0	0.10	EPA 200.8
Zinc, Total (µg/L)	<2.0	<0.00001	<2.0	<0.00001	<2.0	<0.00001	1	1	2.0	EPA 200.8

Table 3 Historical CCR Appendix III Constituents New Castle Plant Ash Landfill

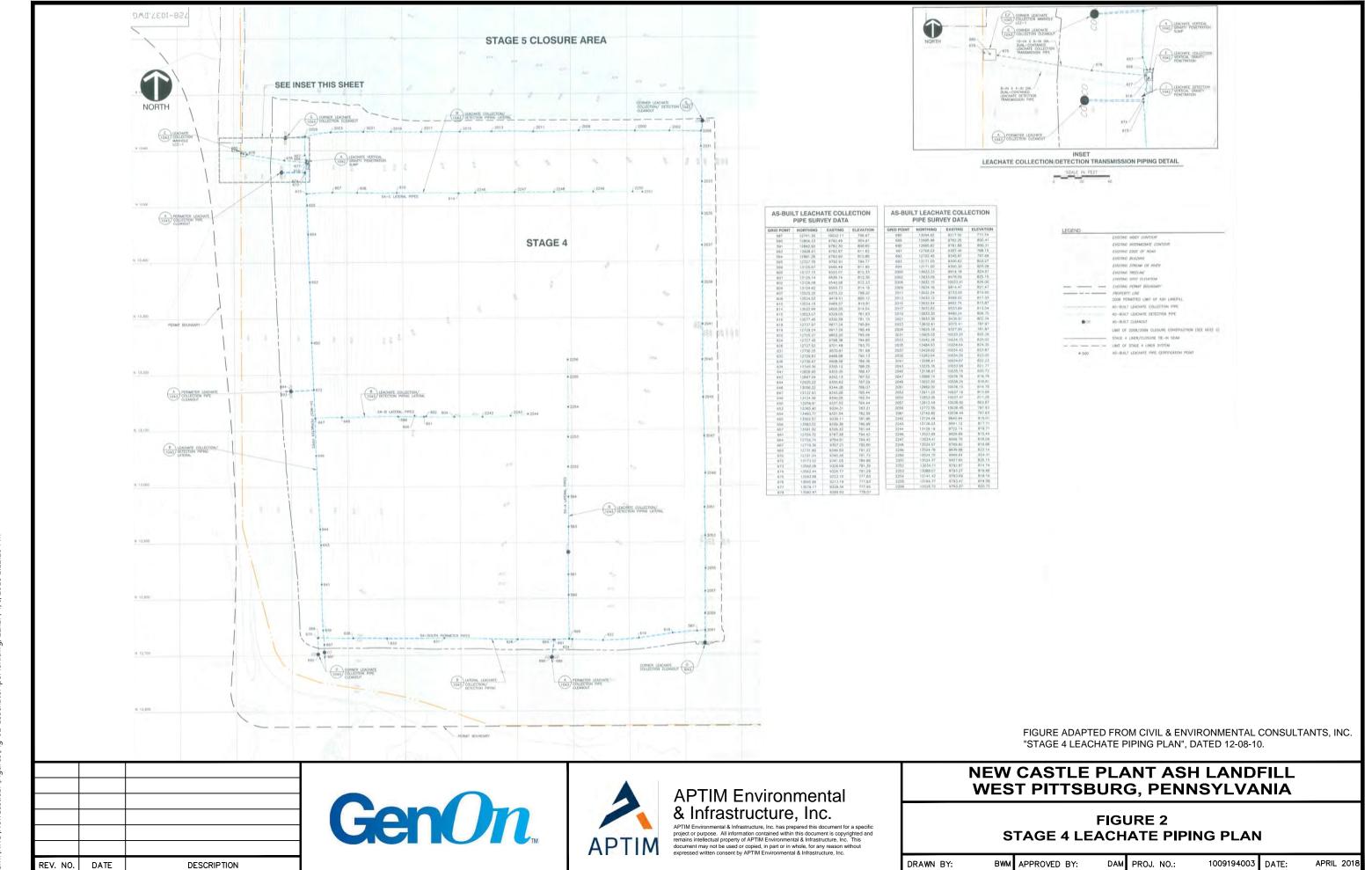
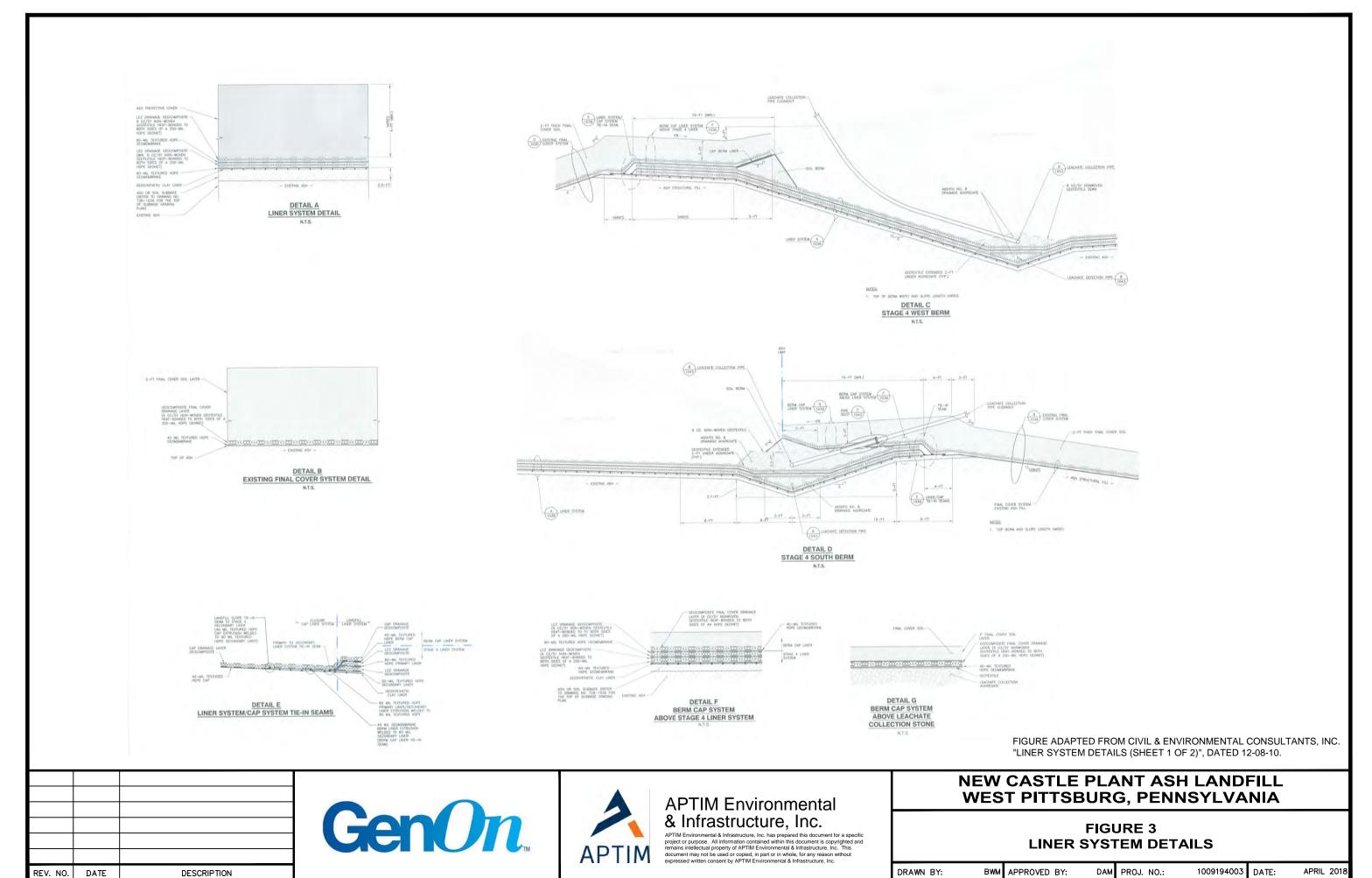
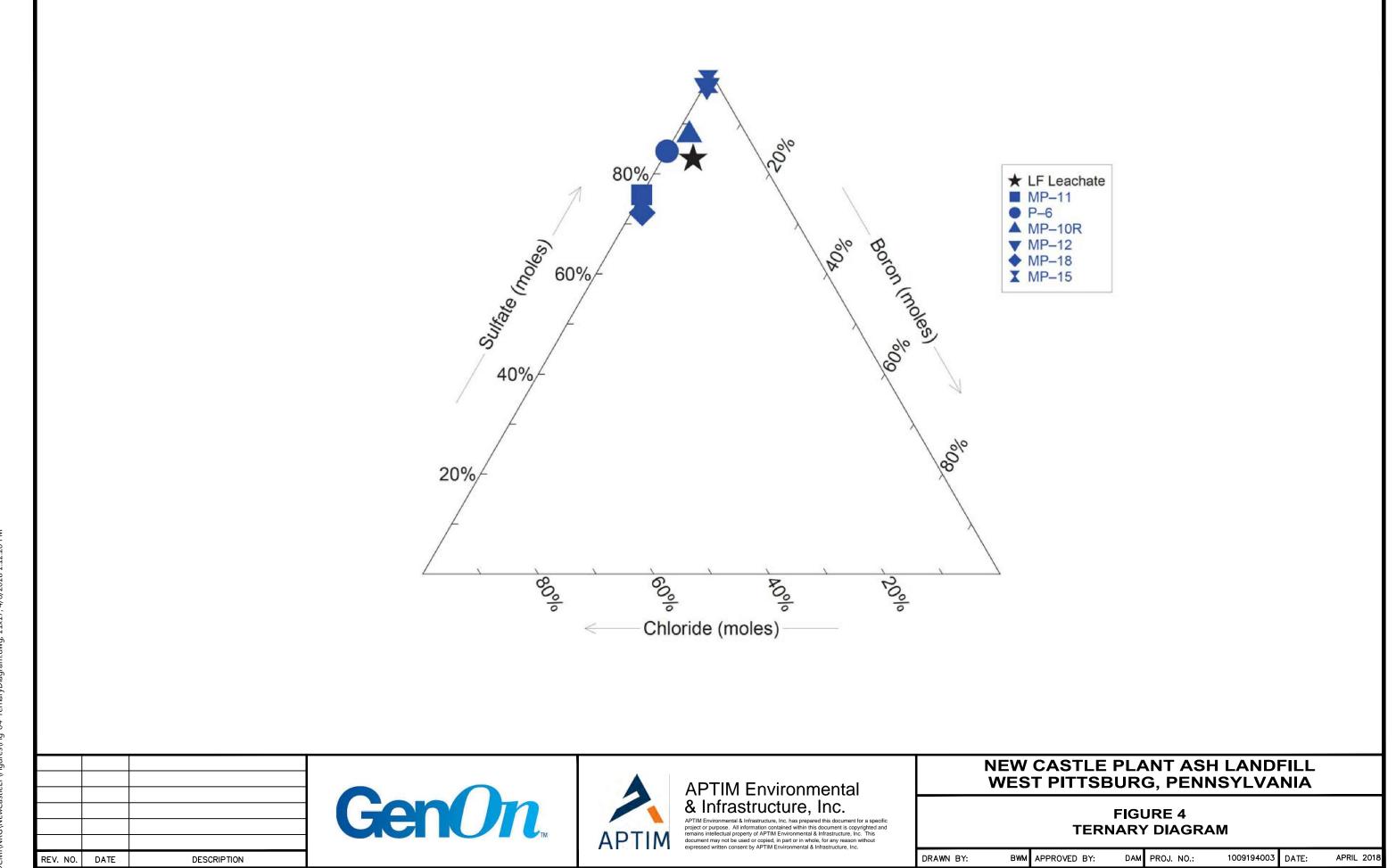

Monitoring Well	Date	Total Boron (mg/L)	Total Calcium (mg/L)	Total Chloride (mg/L)	Т	otal Fluoride (mg/L)	Total Dissolved Solids (mg/L)	Sulfate (mg/L)	pH (S.U.)	
	Sampled	Calculated Background								
		0.30	217	50		0.1	980	454	6.04-7.96	
	30-Dec-15	0.05	146	36	<	0.1	922	425	7.47	
	1-Mar-16	0.09	173	31	<	0.1	842	410	7.39	
	1-Jun-16	0.15	178	27	<	0.1	890	385	7.29	
MP-11	7-Sep-16	0.07	169	33		0.1	980	380	7.33	
(Upgradient)	30-Nov-16	0.08	167	33		0.1	872	390	7.43	
	1-Mar-17	0.34	187	26	<	0.1	880	371	7.35	
	31-May-17	0.09	192	25		0.1	838	381	7.03	
	29-Aug-17	0.08	178	48		0.1	916	408	7.11	
Averag	ge	0.12	174	32		0.1	893	394	7.27	
	30-Dec-15	0.11	126	19	<	0.1	622	297	6.69	
	1-Mar-16	0.13	146	26	<	0.1	602	322	6.65	
	1-Jun-16	0.11	129	19	<	0.1	618	302	6.63	
P-6	7-Sep-16	0.12	136	21	<	0.1	620	306	6.58	
(Upgradient)	30-Nov-16	0.12	141	19	<	0.1	614	297	6.56	
	1-Mar-17	0.12	135	20	<	0.1	614	305	6.60	
	31-May-17	0.11	146	22	<	0.1	606	316	6.42	
	29-Aug-17	0.12	138	22	<	0.1	644	327	6.52	
Averag	Average		137	21		0.1	618	309	6.57	
	30-Dec-15	9.62	294	24	<	0.1	1650	853	6.02	
	1-Mar-16	9.55	330	26	<	0.1	1510	784	6.14	
	1-Jun-16	7.95	226	20	<	0.1	1250	609	5.90	
MP-10R	7-Sep-16	10.9	352	31	<	0.1	1730	817	6.05	
(Downgradient)	30-Nov-16	12.7	330	34	<	0.1	1670	824	6.10	
	1-Mar-17	12.1	285	37	<	0.1	1450	797	6.17	
	31-May-17	5.47	212	23	<	0.1	1010	474	6.01	
	29-Aug-17	10.1	254	27	<	0.1	1300	625	6.06	
Averag	e	9.80	285	28		0.1	1446	723	6.05	

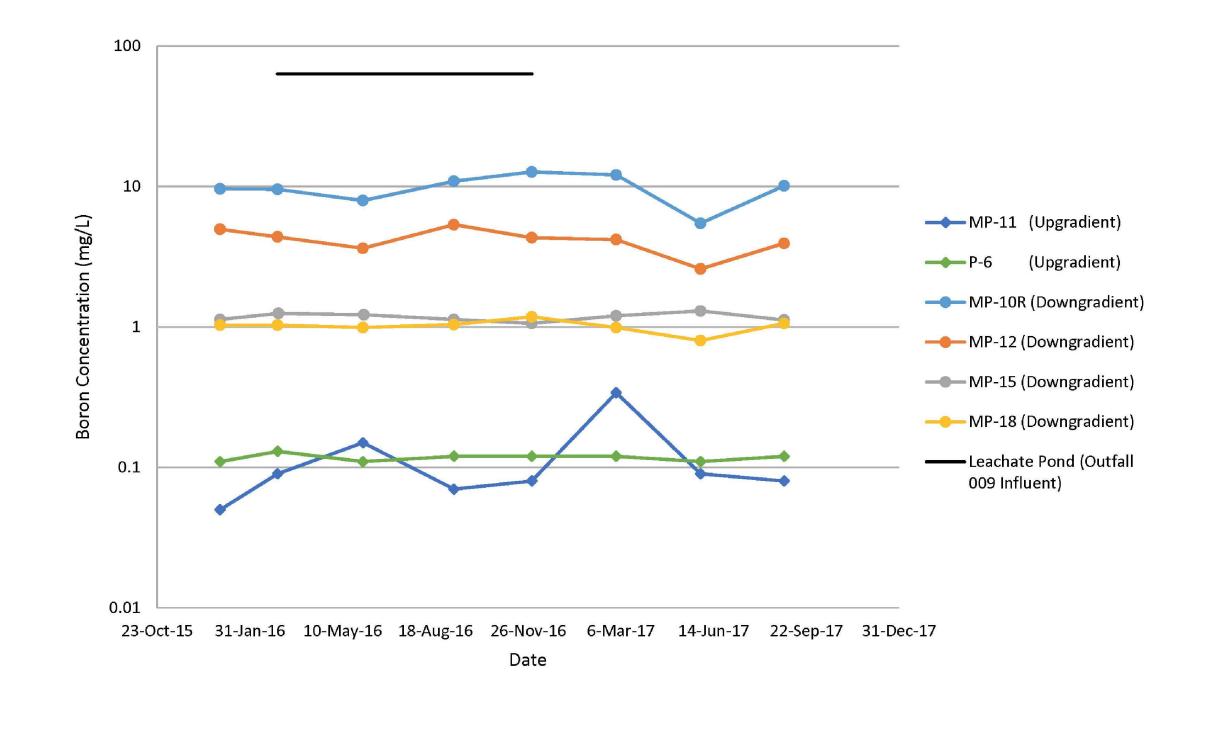
				Table 3								
			Historical (CCR Appendix III	Constituents							
				Castle Plant Ash								
			INCW	Castle Flailt Asii	Lanum							
		Total Boron	Total Calcium	Total Chloride	Total Fluorid	e Total Dissolved Solids	Sulfate	pН				
NA - with a wine - NA/- II	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(S.U.)				
Monitoring Well	Sampled	Calculated Background										
		0.30	217	50	0.1	980	454	6.04.7.06				
	22 2 12					555		6.04-7.96				
	30-Dec-15	4.96	573	14	< 0.5	4320	2560	6.61				
	1-Mar-16	4.38	594	11	< 1.0	3640	1970	6.55				
	1-Jun-16	3.63	482	11	< 1.0	3780	2140	6.54				
MP-12	7-Sep-16	5.35	600	14	< 1	4420	2490	6.50				
(Downgradient)	30-Nov-16	4.32	600	12	< 0.5	4030	1950	6.53				
	1-Mar-17	4.19	582	16	0.2	4040	2380	6.60				
	31-May-17	2.59	569	14	< 0.2	3300	1780	6.18				
	29-Aug-17	3.94	589	18	< 0.5	4600	2760	6.31				
Averag	ge	4.17	574	14	0.6	4016	2254 6.45					
	30-Dec-15	1.13	638	7	< 0.1	2340	1150	6.68				
	2-Mar-16	1.25	761	6	< 0.1	2310	1230	6.73				
	2-Jun-16	1.22	645	6	< 0.1	2390	1180	6.62				
MP-15	7-Sep-16	1.13	643	5	< 0.1	2320	1120	6.53				
(Downgradient)	30-Nov-16	1.06	585	6	< 0.1	2190	1060	6.61				
	1-Mar-17	1.20	670	7	< 0.1	2290	1210	6.48				
	31-May-17	1.30	669	8	< 0.2	2420	1120	6.49				
	29-Aug-17	1.12	627	6	< 0.2	2280	1130	6.41				
Averag	ge	1.18	655	6	0.1	2318	1150	6.56				
	30-Dec-15	1.03	124	10	0.2	536	98	6.75				
	1-Mar-16	1.03	87	4	0.1	336	53	6.49				
	1-Jun-16	0.99	137	10	< 0.2	580	91	6.82				
MP-18	7-Sep-16	1.04	149	14	0.2	606	115	6.74				
(Downgradient)	30-Nov-16	1.18	134	15	0.2	512	80	6.55				
	1-Mar-17	0.99	108	12	0.1	442	66	6.54				
	31-May-17	0.80	66	5	0.1	252	33	5.93				
	29-Aug-17	1.06	144	12	0.2	520	59	6.74				
Averag	je	1.02	119	10	0.2	473	74	6.46				

Notes:


- 1. Cells with "<" are represented as non-detects. Values shown correspond to the laboratory reporting limit.
- 2. The average for chemcial constituents is an arithmetic mean.
- 3. The average for pH is an arithmetic mean of the logarithmically transformed hydrogen ion values [H+] from each sampling event.
- 4. Background values based on statistical evaluation of initial eight rounds of groundwater sampling data.



C:\3DCivi\\NRG\NewCastleLF\Figures\Fig-02-LeachatePipePlan.dwg, 11x17, 4/6/2018 1:12:10 PM



C:\3DCivi\\NRG\NewCastleLF\Figures\Fig-04-TernaryDiagram.dwg, 11x17, 4/6/2018 1:12:20 PM

DATE

DESCRIPTION

APTIM Environmental

& Infrastructure, Inc.

APTIM Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All information contained within this document is copyrighted and remains intellectual property of APTIM Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by APTIM Environmental & Infrastructure, Inc.

NEW CASTLE PLANT ASH LANDFILL WEST PITTSBURG, PENNSYLVANIA

FIGURE 5 **BORON CONCENTRATIONS GRAPH**

DRAWN BY: BWM APPROVED BY: DAM PROJ. NO.:

1009194003 DATE:

APRIL 2018

C:\3DCivi\NRG\NewCastleLF\Figures\Fig-06-GW-2017-10.dwg, 11x17, 4/6/2018 1:12:31 PM

Subject: RE: Leachate Detection Zone Inquiry, 1Q15 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1503)

Jennifer,

I confirm that no liquid was flowing from the leachate <u>detection</u> zone during 1Q15; and therefore, no samples were collected.

Steve

Steven W. Brown

Environmental Specialist

New Castle, Niles, & Elrama Plants

Ph: 724-535-1825 - New Castle Ph: 330-505-4366 - Niles Cell: 330-233-4663

Fax: 724-535-1825 – New Castle Fax: 330-505-4351 - Niles

From: Ewing, Jennifer [mailto:jewing@cecinc.com]

Sent: Wednesday, April 01, 2015 11:10 AM

To: Brown, Steven W.

Subject: Leachate Detection Zone Inquiry, 1Q15 Data Management - New Castle Plant Ash Landfill (CEC

Project No. 070-109.1503)

Importance: High

Hi Steve,

I understand that NRG personnel observe the leachate system at the New Castle Plant Ash Landfill on a daily basis. I will be preparing the 1Q15 Form 14R submittal to the DEP and need you to confirm that no liquid was flowing from the leachate <u>detection</u> zone to date during 1Q15; and therefore, no samples were collected.

Please contact me with any questions or comments.

Thanks, Jennifer

Jennifer A. Ewing, P.G. / Project Manager

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205-1751

 $Toll\text{-}Free:\ 800\text{-}365\text{-}2324 \cdot Direct:\ 412\text{-}249\text{-}3173 \cdot Fax:\ 412\text{-}429\text{-}2114$

Email: <u>jewing@cecinc.com</u> Mobile: 412-215-1289 · <u>http://www.cecinc.com</u> Senior Leadership · Integrated Services · Personal Business Relationships

Celebrating 25 Years ~ 1989-2014

Subject: RE: Leachate Detection Zone Inquiry, 2Q15 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1503)

Jennifer,

I confirm that no liquid was observed flowing from the leachate <u>detection</u> zone during 2Q15 to date; and therefore, no samples were collected.

Steve

Steven W. Brown

Environmental Specialist

New Castle, Niles, & Elrama Plants

Ph: 724-535-1825 - New Castle

Cell: 330-233-4663

Fax: 724-535-1825 - New Castle Fax: 330-505-4351 - Niles

From: Ewing, Jennifer [mailto:jewing@cecinc.com]

Sent: Tuesday, June 23, 2015 8:52 AM

To: Brown, Steven W.

Subject: RE: Leachate Detection Zone Inquiry, 2Q15 Data Management - New Castle Plant Ash Landfill

(CEC Project No. 070-109.1503)

Hi Steve,

I understand that NRG personnel observe the leachate system at the New Castle Plant Ash Landfill on a daily basis. I will be preparing the 2Q15 Form 14R submittal to the PADEP and need you to confirm that no liquid was flowing from the leachate <u>detection</u> zone to date during 2Q15; and therefore, no samples were collected.

Note that the forms are due to PADEP no later than Tue-Jul-07-2015. Please contact me with any questions or comments.

Thanks, Jennifer

Jennifer A. Ewing, P.G. / Project Manager

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205-1751

Toll-Free: 800-365-2324 · Direct: 412-249-3173 · Fax: 412-429-2114 Email: jewing@cecinc.com Mobile: 412-215-1289 · http://www.cecinc.com

Senior Leadership · Integrated Services · Personal Business Relationships

Celebrating 25 Years ~ 1989-2014

Subject: RE: Leachate Detection Zone Inquiry, 3Q15 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1503)

Jennifer,

As of 9/24/15, New Castle Station personnel have not observed flow from the leachate detection zone during the 3rd Quarter 2015.

Steve

Steven W. Brown Environmental Specialist

New Castle, Niles, & Elrama Plants
Ph: 724-535-1825 - New Castle
Cell: 330-233-4663

Fax: 724-535-1801 – New Castle Fax: 330-505-4351 - Niles

From: Ewing, Jennifer [mailto:jewing@cecinc.com] Sent: Thursday, September 24, 2015 4:20 PM

To: Brown, Steven W.

Subject: Leachate Detection Zone Inquiry, 3Q15 Data Management - New Castle Plant Ash Landfill (CEC

Project No. 070-109.1503)

Hi Steve,

I understand that NRG personnel observe the leachate system at the New Castle Plant Ash Landfill on a daily basis. I will be preparing the 3Q15 Form 14R submittal to the PADEP and need you to confirm that no liquid was flowing from the leachate <u>detection</u> zone to date during 3Q15; and therefore, no samples were collected.

Note that the forms are due to PADEP no later than Fri-Oct-09-2015. Please contact me with any questions or comments.

Thanks, Jennifer

Jennifer A. Ewing, P.G. / Project Manager

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205-1751

Toll-Free: 800-365-2324 · Direct: 412-249-3173 · Fax: 412-429-2114 Email: jewing@cecinc.com Mobile: 412-215-1289 · http://www.cecinc.com Senior Leadership · Integrated Services · Personal Business Relationships

Celebrating 25 Years ~ 1989-2014

Subject: RE: Leachate Detection Zone Inquiry, 4Q15 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1503)

Jennifer,

As of 12/22/15, New Castle Station personnel have not observed flow from the leachate detection zone during the 4th Quarter 2015 and no samples were collected.

Steve

Steven W. Brown

Environmental Specialist

New Castle, Niles, & Elrama Plants

Ph: 724-535-1825 - New Castle

Cell: 330-233-4663

Fax: 724-535-1801- New Castle Fax: 330-505-4351 - Niles

From: Ewing, Jennifer [mailto:jewing@cecinc.com]

Sent: Monday, December 21, 2015 4:55 PM

To: Brown, Steven W.

Subject: Leachate Detection Zone Inquiry, 4Q15 Data Management - New Castle Plant Ash Landfill (CEC

Project No. 070-109.1503)

Hi Steve,

I understand that NRG personnel observe the leachate system at the New Castle Plant Ash Landfill on a daily basis. I will be preparing the 4Q15 Form 14R submittal to the PADEP and need you to confirm that no liquid was flowing from the leachate <u>detection</u> zone to date during 4Q15; and therefore, no samples were collected.

Note that the forms are due to PADEP no later than Tue-Jan-05-2016; therefore, I would like to issue the letter for Ethan's signature prior to the New Year's holiday. Please contact me with any questions or comments.

Thanks, Jennifer

Jennifer A. Ewing, P.G. / Project Manager

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205-1751

Toll-Free: 800-365-2324 · Direct: 412-249-3173 · Fax: 412-429-2114 Email: <u>jewing@cecinc.com</u> Mobile: 412-215-1289 · <u>http://www.cecinc.com</u>

Senior Leadership · Integrated Services · Personal Business Relationships

Celebrating 25 Years ~ 1989-2014

This electronic communication and any attachments are intended solely for the use of the person or entity to which it is addressed, and may contain information that is confidential, privileged and exempt from disclosure under applicable law, including copyright law. If you are not the intended recipient of this message, you are prohibited from disclosing,

From: <u>Brown, Steven W.</u>

To: "Ewing, Jennifer (jewing@cecinc.com)"
Subject: New Castle Leachate Detection Zone Flow

Attachments: <u>image001.jpg</u>

image002.jpg

Jennifer,

As of 3/30/16, New Castle Station personnel have not observed flow from the leachate detection zone during the 1st Quarter 2016 and no samples were collected.

Steve

Steven W. Brown

Environmental Specialist

New Castle, Niles, & Elrama Stations

Ph: 724-535-1825 - New Castle

Cell: 330-233-4663

Fax: 724-535-1801- New Castle Fax: 330-505-4351 - Niles

Note: The information contained in this e-mail and any accompanying documents may contain information that is confidential or otherwise protected from disclosure. If you are not the intended recipient of this message, or if this message has been addressed to you in error, please immediately alert the sender by reply e-mail and then delete this message, including any attachments. Any dissemination, distribution or other use of the contents of this message by anyone other than the intended recipient is strictly prohibited.

Subject: RE: Leachate Detection Zone Inquiry, 2Q16 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1603)

Jennifer,

As of 6/29/16, New Castle Station personnel have not observed flow from the leachate detection zone during the 2nd Quarter 2016 and no samples were collected.

Steve

Steven W. Brown

Environmental Specialist

New Castle, Niles, & Elrama Plants

Ph: 724-535-1825 - New Castle

Cell: 330-233-4663

Fax: 724-535-1801- New Castle Fax: 330-505-4351 - Niles

From: Ewing, Jennifer [mailto:jewing@cecinc.com]

Sent: Wednesday, June 29, 2016 1:53 PM

To: Brown, Steven W.

Subject: Leachate Detection Zone Inquiry, 2Q16 Data Management - New Castle Plant Ash Landfill (CEC

Project No. 070-109.1603)

Hi Steve,

I understand that NRG personnel observe the leachate system at the New Castle Plant Ash Landfill on a daily basis. I will be preparing the 2Q16 Form 14R submittal to the PADEP and need you to confirm that no liquid was flowing from the leachate <u>detection</u> zone to date during 2Q16; and therefore, no samples were collected.

Note that the forms are due to PADEP no later than Th-Jul-14-2016. Please contact me with any questions or comments.

Thanks, Jennifer

Jennifer A. Ewing, P.G. / Project Manager

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205-1751

Toll-Free: 800-365-2324 · Direct: 412-249-3173 · Fax: 412-429-2114 Email: jewing@cecinc.com Mobile: 412-215-1289 · http://www.cecinc.com Senior Leadership · Integrated Services · Personal Business Relationships

Subject: Leachate Detection Zone Inquiry, 3rdQ16 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1603)

Jennifer,

As of 9/30/16, New Castle Station personnel have not observed flow from the leachate detection zone during the 3rd Quarter 2016 and no samples were collected.

Steve

Steven W. Brown Environmental Specialist New Castle, Niles, & Elrama Plants

Ph: 724-535-1825 - New Castle

Cell: 330-233-4663

Fax: 724-535-1801- New Castle Fax: 330-505-4351 - Niles

Subject: RE: Leachate Detection Zone Inquiry, 4Q16 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1603)

Jennifer,

The New Castle personnel have not observed any flow from the leachate detection zone during the 4th quarter 2016 as of December 16, 2016.

Steve

Steven W. Brown

Environmental Specialist

New Castle, Niles, & Elrama Plants

Ph: 724-535-1825 - New Castle Cell: 330-233-4663 Fax: 724-535-1801- New Castle Fax: 330-505-4351 - Niles

From: Ewing, Jennifer [mailto:jewing@cecinc.com]

Sent: Friday, December 16, 2016 9:56 AM

To: Brown, Steven W.

Subject: Leachate Detection Zone Inquiry, 4Q16 Data Management - New Castle Plant Ash Landfill (CEC

Project No. 070-109.1603)

Importance: High

Hi Steve,

I understand that NRG personnel observe the leachate system at the New Castle Plant Ash Landfill on a daily basis. I will be preparing the 4Q16 Form 14R submittal to the PADEP and need you to confirm that no liquid was flowing from the leachate <u>detection</u> zone to date during 4Q16; and therefore, no samples were collected.

Note that the forms are due to PADEP no later than Th-Dec-29-2016. Please contact me with any questions or comments.

Thanks, Jennifer

Jennifer A. Ewing, P.G. / Project Manager

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205-1751

Toll-Free: 800-365-2324 · Direct: 412-249-3173 · Fax: 412-429-2114 Email: jewing@cecinc.com Mobile: 412-215-1289 · http://www.cecinc.com Senior Leadership · Integrated Services · Personal Business Relationships

Subject: RE: Leachate Detection Zone Inquiry, 1Q17 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1703)

Jennifer,

The New Castle personnel have not observed any flow from the leachate detection zone during the 1st quarter 2017 as of March 27, 2017. Therefore no samples were collected for analysis.

Steve

Steven W. Brown

Environmental Specialist

New Castle, Niles, & Elrama Plants

Ph: 724-535-1825 - New Castle

Cell: 330-233-4663

Fax: 724-535-1801- New Castle Fax: 330-505-4351 - Niles

From: Ewing, Jennifer [mailto:jewing@cecinc.com]

Sent: Monday, March 27, 2017 4:42 PM

To: Brown, Steven W.

Subject: Leachate Detection Zone Inquiry, 1Q17 Data Management - New Castle Plant Ash Landfill (CEC

Project No. 070-109.1703)

Hi Steve,

I understand that NRG personnel observe the leachate system at the New Castle Plant Ash Landfill on a daily basis. I will be preparing the 1Q17 Form 14R submittal to the PADEP and need you to confirm that no liquid was flowing from the leachate <u>detection</u> zone to date during 1Q17; and therefore, no samples were collected.

Note that the forms are due to PADEP no later than Fri-Apr-07-2017. Please contact me with any questions or comments.

Thanks, Jennifer

Jennifer A. Ewing, P.G. / Project Manager

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205-1751

Toll-Free: 800-365-2324 · Direct: 412-249-3173 · Fax: 412-429-2114 Email: jewing@cecinc.com Mobile: 412-215-1289 · http://www.cecinc.com Senior Leadership · Integrated Services · Personal Business Relationships

Subject: RE: Leachate Detection Zone Inquiry, 2Q17 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1703)

Jennifer,

New Castle Station personnel did not observe flow from the leachate detection zone during the 2nd Quarter 2017 and no samples were collected.

Steve

Steven W. Brown

Environmental Specialist

New Castle, Niles, & Elrama Plants

Ph: 724-535-1825 - New Castle

Cell: 330-233-4663

Fax: 724-535-1801- New Castle Fax: 330-505-4351 - Niles

From: Ewing, Jennifer [mailto:jewing@cecinc.com]

Sent: Monday, July 10, 2017 2:13 PM

To: Brown, Steven W.

Subject: Leachate Detection Zone Inquiry, 2Q17 Data Management - New Castle Plant Ash Landfill (CEC

Project No. 070-109.1703)

Importance: High

Hi Steve,

I understand that NRG personnel observe the leachate system at the New Castle Plant Ash Landfill on a daily basis. I am preparing the 2Q17 Form 14R submittal to the PADEP and need you to confirm that no liquid was flowing from the leachate <u>detection</u> zone to date during 2Q17; and therefore, no samples were collected.

Note that the forms are due to PADEP no later than Th-Jul-20-2017. Please contact me with any questions or comments.

Thanks, Jennifer

Jennifer A. Ewing, P.G. / Project Manager

Civil & Environmental Consultants, Inc.

333 Baldwin Road · Pittsburgh, PA 15205-1751

Toll-Free: 800-365-2324 · Direct: 412-249-3173 · Fax: 412-429-2114

Email: <u>jewing@cecinc.com</u> Mobile: 412-215-1289 · <u>http://www.cecinc.com</u> Senior Leadership · Integrated Services · Personal Business Relationships

From: Brown, Steven W.

To: "Ewing, Jennifer (jewing@cecinc.com)"

Subject: New Castle Station Landfill Leachate Detection Flow 3rd Quarter 2017

Attachments: <u>image001.png</u>

image004.jpg

Jennifer,

There has been no flow observed from the leachate detection zone during the 3rd quarter 2017 at the New Castle Landfill.

Steve

Note: The information contained in this e-mail and any accompanying documents may contain information that is confidential or otherwise protected from disclosure. If you are not the intended recipient of this message, or if this message has been addressed to you in error, please immediately alert the sender by reply e-mail and then delete this message, including any attachments. Any dissemination, distribution or other use of the contents of this message by anyone other than the intended recipient is strictly prohibited.

Subject: RE: Leachate Detection Zone Inquiry, 4Q17 Data Management - New Castle Plant Ash Landfill (CEC Project No.

070-109.1703)

Attachments: <u>image001.png</u>

image004.jpg

Jennifer,

New Castle Station personnel have not observed flow from the leachate detection zone during the 4th Quarter 2017 as of 21-15-17 and no samples were collected.

Steve

Please note my email address change as shown above

Note: The information contained in this e-mail and any accompanying documents may contain information that is confidential or otherwise protected from disclosure. If you are not the intended recipient of this message, or if this message has been addressed to you in error, please immediately alert the sender by reply e-mail and then delete this message, including any attachments. Any dissemination, distribution or other use of the contents of this message by anyone other than the intended recipient is strictly prohibited.

From: Ewing, Jennifer [mailto:jewing@cecinc.com]

Sent: Monday, December 11, 2017 5:35 PM

To: Brown, Steven W.

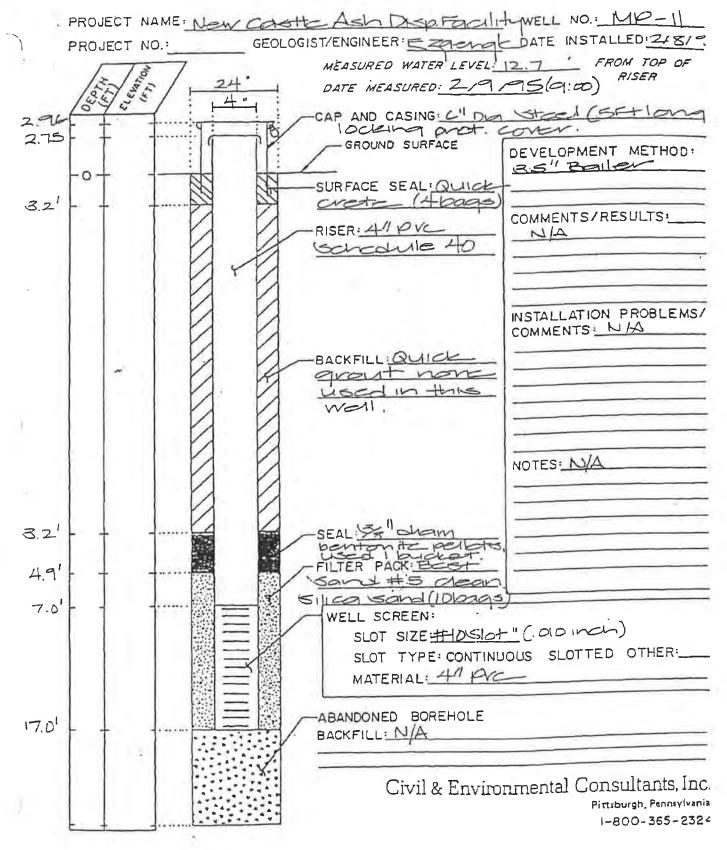
Subject: Leachate Detection Zone Inquiry, 4Q17 Data Management - New Castle Plant Ash Landfill (CEC

Project No. 070-109.1703)

Hi Steve,

I understand that NRG personnel observe the leachate system at the New Castle Plant Ash Landfill on a daily basis. I am preparing the 4Q17 Form 14R submittal to the PADEP and need you to confirm that no liquid was flowing from the leachate <u>detection</u> zone to date during 4Q17; and therefore, no samples were collected.

Note that the forms are due to PADEP no later than Tue-Dec-26-2017; therefore, we anticipate issuing the week before Christmas. Please contact me with any questions or comments.


Thanks,

Jennifer

Jennifer A. Ewing, P.G. / Project Manager

Appendix B
Boring Logs/Well Construction Details

FACILITY NAME LOCATION OF BORING New Chatte Fly Ash Bropasal Facility Weather sunny & col (10° -8-95 ORILLING METHOD: HOLLOW Stern AMERICA) MP-11 · MP-11 61/4" I.D. (95/8"0.D. SHEET sampling method: 20 Split spoon OF Alsh Disp DAILLING simple es inch drop. START FINISH DOMILING COMPR WONTED CONTR. CONT. Aren 991 (1095 TIME TIME WATERLEVEL · MP 12-TIME DATE DATE MPID DATE ELEVATION SOIL DENSITY/ CONSISTENCY SURFACE CONDITIONS: Wanded larassy BLOWS/FT COLOR DEPTH IN FEET SOIL off occess Wie 4,81 DADE BROWN (INXPOSIS) SILTY FAMP DE 111 0 (duy), (enft/mod stiff), (topsoil 111 11 5:20 HUL-COUNT 1 1 1 SM 2 1 3 11 111 4 585 Bir Bin 5 DADK-BROWN (ICYP 8/3) SILTY FINE TO MED GRAINES 11 6 (MOTEL), (MEDISTIFF $1_{\tau_{-t}}$ 7 HULL-GOON to made of incotone amviel 8 andidan do 9 79 Water table DK 1233 10 anades to Bm same as above , growed GIHV GAND AND ERAVEL Bubangular is muroted CHECKED BY 8:50 HNU-COAM 2 5P. roson 3 0 à 4 ı 3,5,10,10 STAF COV. α 15 DLIVE GRAY (5 V4) AVEYSIT med law to U 6 (mad STIFF to STIFF wet) DATE HNY=ggm alluvisi 9:20 7 TOTAL DEPTIL 170 8 9 20

Ole Malliner -						D. III.ii g 14		11-	_		_
ole Number:					ft)			2/281-		(mm/d	
ole Diameter: 95/8 inch	nes, From	п <u>О</u> Т	17					E-11/2/	ST	J	5,
	nes, Fron					Drillers Li					
Depth:				7				ZXENG			_
to Static Ground Wate	er Level (SWL):	99	- (tt) 665			CENCE			
WL Weasured: 02	108/9	5		m/od/k	ŊΙ	Township	ರ್ಷ ಚಟನಗ	cipality:	x YLC	IR TOWN	124
Lithologic Description	Plat	round vater" evations	10.	ies"		Comments		Well/Piezon	eter Co	ורובדרשכנוסח	Dep (Ft
											^
DARK BROWN SILTY	iliti		1	14/24	Dey			11/11	"	11111	9
SAND, SOFT / DED, STIFF	1			0,655				CRETE	4" PUC	CRETE	
(TOPSOIL)		2222222747	1					1.1.1.	RISER.	1.11.1.	
	11							7717	1	- Landerson	
	11, 1							BENTONITE		BENTONITE	
	SM				0			A STATE OF THE STA		Subject of	5
DARK BROWN SIETY FINE TO MED GRAINED	i.		2	18/24	MOIST			S- 100		15	
SAND, MEDISTIFF, WITH	11							1.29			
GRAVEL [FILL]								12:035			
	11':							+5	4"	#5	
	1.			K				SUKAN	PVC	SILICA .	
		V_		-11	WATERTA	GLE ENCOLI	UTERED	SAND	10	SAND	10
DANIE AS ABOVE, SPROFS	0		3	17/24	@ 9.9'				SLOT	2.2.4	
TO SILTY SAND AND TERVEL (COUNDED, SUB-								9.00			1
ANGULAR)	100							1::::::::::::::::::::::::::::::::::::::	~		
hada katala kee ahada na 1936 da bi	SP							1. 1. 2. 3.4.	=	13.13	
								1. 1. 1.		49	
	- 20						-	100	-	20 345	13
DLIVE GREY CLAYEY			4	24/24	WET				-		
LT LOW TO MED, PRETICITY, MED STIFF	11.							1. 2.2	=		12
				1							1
-3	1										
					l.						20
								1			1
	1			1							
											1
											1
			15.0			11111111111111111					
**************************************				1				2 21001001	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	A STATE OF THE PARTY OF THE PAR	1
1											1
)											
			1	1	1						

PROJECT NO. 20-211-3 PROJECT Penn Power BORING NO. D-6 ELEVATION ~784 GWL 0 HRS PAGE NO. _ ! OF_ DATE 1/4-5/84 FIELD ENGINEER_ J.M. KING DESCRIPTION BLOWS PER SIX INCHES OR CORE RECOVERY/RUN SAMPLE NO., TYPE & RECOVERY OR & ROCK RECOVERY ROCK BROKENNESS BLOWS HARDNESS CONSISTENCY OR SOIL DENSITY REMARKS# USCS OR PROFILE MATERIAL CASING COLOR CLASSIFICATION 10 9 7 4 15 1 Ill material Sitty ash cinders ground 1000 SAND SILT to SIHU SAND + composed of ash & med dense a cinders to FINE GRAVEL soft 5 10% med dense Bray most ors unders, ASH, Firewhite brick Fragments in silty matrix V/55-1/ 10 10 7. Green- moist to wet SILT + to Fine SAND wet sand streaks yery loose SOCH 777777 Promo moit SILT + tr. CLAYO SAND plant Irags: other V/55-3 /X organic debris 100 7. black 85-4/1 roots in sample -ILLIU SILT + some fine med dense cras- v maist to wat aleved layer 10000 White SAND soft 20 clean well sorted loose soft gray wet fine - med. SAND loose soft way 444164 25 dense Igray - I wet fine SAND and GRAVEL CEFF brown + tr. SILT 30 REMARKS E OH 28': Tot 2" 0.010 screen at 90.4 - 15.4 PROJECT NO. 30-211-3 SORING NO. P-6 # POCKET PENETROMETER READINGS

METHOD OF ADVANCING AND CLEANING BORING

otal epth	Depth:Water To Static Ground Water To Static Ground Water To Static Ground Water To State To S	nes, i er Lev	From To	°-	Drillers License Nurft) Logged By: つかft) County: _/_ ムルム	Drilled By: Drillers License Number: Logged By: つか といる County: イムンムモンステ Township or Municipality: TAVLOR TOWNSHIP				
epth (Ft)			Ground Water* Observations	Sarr	Rec**	Comments	Well/Piezometer Construction	Depti (Ft)		
2	BELKER S.LTY HS + CHARLES, GRANEL, LUDGE	+++						13-		
5	SEE / SKID/SILY TO SILTY SAUD, TERCE FINE SERVE-, MED. JENSE, SOS F									
1	A Section 1	+ + + + + +					PVC.	10-		
15	FEEN SEOM SIC, WHEE FINE EXTID, VERY COOSE, MET BROWN TO SKACK S. C, TE RCE CORY MUD SKAD, FLANT RAGS, OR GAING DEELIS	+ 1111111111111111111111111111111111111				MUIST TOLLET		/5-		
.0	SPEY-WHITE SILT, SOME THE SAND MED DEUSE, BOT, ROOTS, NEW SHEED BEEY FILLE TO MED SAND, DOSE, SOFT					we =	2" 410 c.or	20		
5							5.4.20	25.		
13	REY BOOM I FINE SAND AND RAJEL, TRACE SILT, DENSE, TIFF	0.01				W€T	NO ADDITIONAL CONSTRUCTION DETRILS	30		

Project Name: Borehole/Well ID: MP-10R New Castle Plant Ash Landfill Civil & Environmental Consultants, Inc. Casing Elevation: 776.9756 Chicago Cincinnati Columbus Export Detroit Ground Elevation: 775.1076 Indianapolis Nashville Pittsburgh St. Louis Groundwater Ele.: 768.2756 Project No.: 040-654.0208 Date Started: 7/17/2008 Completed: 7/18/2008 Sample Information: Collected a lined bag of soil from (0'-5') for geotech analysis. **Drilling Company: Terra Testing** Driller: Danny Dodd CEC Representative: Timothy E. Moberg Comments/Problems: Drilling Method: H.S.A Flowing sands caused inner augers to bind up when switching from Core Size: Bore Hole: 12" splitspooning to augering. Splitspoons were not collected from (23'-Well Installed: 4" Well 30'). Flowing sands also prevented the well from being set at the bottom of the boring. Screened Interval: 17.5'-27.5' Organic Vapor Reading (ppm) Recovery (feet Blow Counts/ RQD Sample Type Graphic Log Sample No. Depth (feet) Elevation (feet, msl) Core Run **Material Description** Well Diagram and Comments -3 -1 **Ground Surface** 0.0 FILL Concrete \$ 90 \$ 100 \$ Gray FLYASH, some roots at 80.1 SS 1.6 1.1.1.1 S-1 surface, moist at (0'-2'), moist+ at (2'-3'), wet to saturated at (3'-9.5') Augered 3. Bentonite/Cemen 25.8 SS S-2 2.0 2,1,1,2 5 Augered O G Water Level-8.7' TOC (7/18/2008) -- "IN 7. 39.4 SS S-3 1.4 3,1,1,1 ß Augered 00 9 3 -9.5 -10.0 FILL/ALLUVIUM S-4 1.6 WOR\2 66.2 SS Brown SILT, with gray flyash, wet 11

Brown SILT, with very fine

grained sand, wet

Brown SILT, trace gray mottles,

ALLUVIUM

Augered

1,1,1,2

92.7

SS

13-

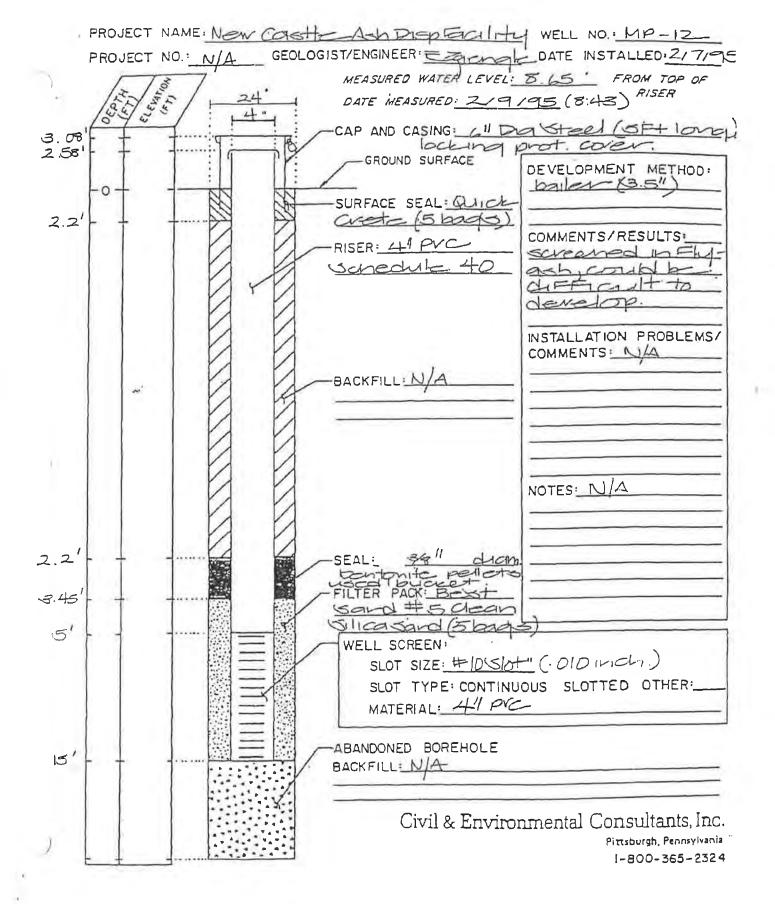
S-5

1.4

Bentonite Crumbles

-11.5

Civil	& Er	nvironmental C	onsul	tants,	Inc.	Project Name: New Castle Plant As Project No.: 040-625	sh Land	. Boreh	ole/Well ID: MP-10R
Sample 1,007	Recovery	Blow Counts/ RQD	Organic Vapor	Sample Type	Depth (feet)	Material Description and Comments	Graphic Log	Elevation (feet, msl)	Well Diagram
		Augered							
S-6	0.6	WOR\0.5,1,1,3	81.3	SS	16-	Brown fine grained SAND, with silt, wet		-15.5	Bentonite Seal
		Augered			18-	Brown SAND and GRAVEL,	:::::	-17.5	- T
S-7	1.8	29,16,13,22	26.7	SS	-	moist+ to wet			
		Augered			20-				- Pack
S-8	1.2	28,13,13,22	24.6	ss	22-				#3 Silca Sand Filter Pack
		Augered			26-			-30.0	#3.6
					30 -	Bottom of Boring at 30' below ground surface.			


MP-10R 040-654.0208 Page: 2 of 2

FORM X-804 (Z-95) DISTRIBUTION:

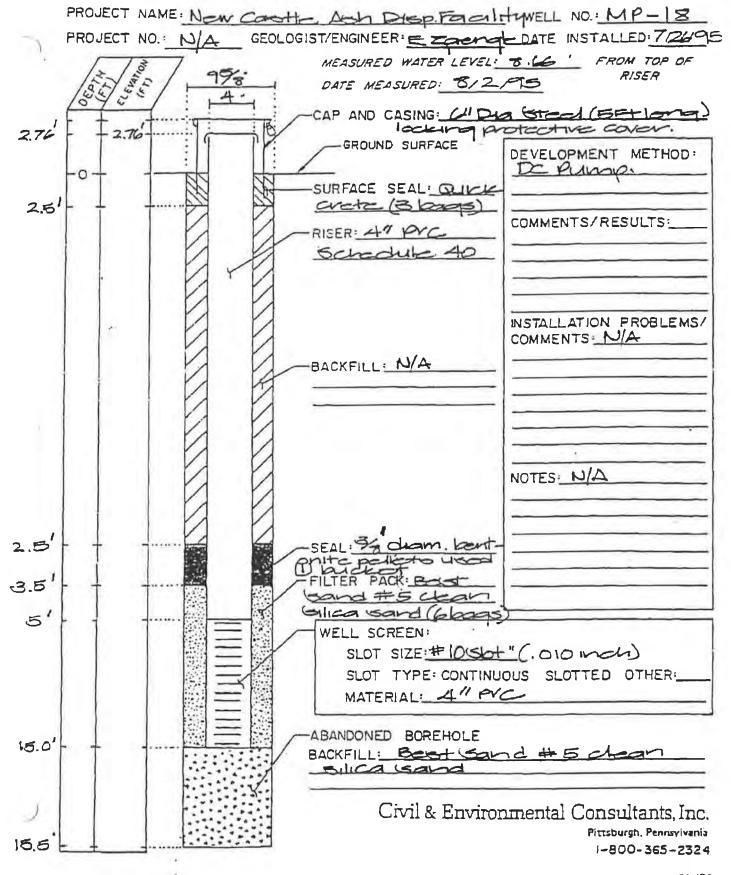
ORIGINAL - FIELD COPY

YELLOW COPY - REPORT COPY

PINK COPY - FILE COPY

} ore	hole Number: MP	-12					Drilling Method	: 6/4 ID HSA	
	Elevation (Ft/MSL):					(ft)	Date Drilled:	02/07/95 (mm	/dd/yy)
	nole Diameter: 95/inc	nac	From O 1	n 15				THEORST DRILLING SE	
E			From 1				Drillers License I		
F 4.		162,		·	5	 1		ZAENGLER.	
ota	I Depth: In to Static Ground Wat		1.463.441.5			40265			
Dept	to Static Ground Wat	er Le	vei (2AAT):		0.[Tt) 000		inicipality: TRULOR TOWN	4111.0
.ate	39VL Measured:OL	2/0	+/75	:m	m/ca/	NI	DINI 10 01121WC	HICHAITY. / X.V.LOR. / JUST.	SETTE
39pt0	_itnoical(Description	Plat	3round Water* Observation	20	mples (ec/		lamments	Well/Piezometer Construction	Depth (Ft)
-0	0-05 : DAKE BEJULU SANDY	1		1	201.	Dev		- In	()-
	SOFT MED STIFF (TURON)			'	1724	DRY		CRETE 4" CRETE	/ -
	05-20 . CARK GREY	111						PVC STILL) =
-	FAYRAH (SAUDYSIET),	1111	·····	+				PENTOUTE BENTOUT	E.
	7.110.5	111	1						_
_		ML	li.						
-5	SAME AS ABOVE	111	_	2	16/24			ED 4"	. 5
		Ш				WATER 106.1	TABLE ENCOUNTER	PVC	. 2
		111			100	(0.1		#10	-
	***************************************	111	1	1	1			#5 SLAT #5	
		M						SILICA SILICA	1 2
		111		1	1			SAND SAND	
-10	SAME AS ABOVE	Ш		3	18/24	WET		PICK - PACK	10-
		Ш							5
	Parameter Commence	111							
•	EGNE AS CANT	111		1	D. 7				
	SAME AS AGOVE			4	10/24	WET			3
15		111							11.5
77									
					10				
		1		1	1				
						200000000000000000000000000000000000000			
								P	
				1	1				1
		1			4				
		1							
							erik waser in de de arres en de arr		
			***************************************	1	1				""/ T
								31.	
						6		TI.	
199	13					1			
				1					
				T				••••	
								44 ()	
)			1					-
				_	100				and a
	* V Encountered G	COLIF	od Water	W Co	MODE!	a Static \	Mater I evel	** Recovered/Attempt	red Det

18.0


VE.	TON OF BO	- Y	JUN	ny.	540		*	Mew Carothe Ash Droposal Facility
	200	10 A		-150'-7 100 HW-	15		ţ.	SAMPLING METHOD: 2.0 COLH DOWN DRILLING SAMPLING METHOD: 2.0 COLH DOWN DRILLING WATER LEVEL 9.6 DOWN DRILLING TIME PATE DA
SAMPLER S	INCHES PECOVERED	SAUPLE NO.	BI OWS/FT. SAMPLER	SOL DENSITY!	COLOR	DEPTH IN FEET	SOIL	DATE 4/2045 4/204/2 SURFACE CONDITIONS: Open Field
65	24	5/2		m	and	0 -		Dark gray (N3), (SIIT, trace Fire world and organics in to #((topsoil), (vy soft to soft), (mokt), (Fry Ash). How appropriate
	1	/				3 -		
56	24/12	57	2,2,7,3	€5FH	gny	5 - 6 -	ML	madium band (consening with appears Limina on: 58 HNU = Oppi
	/					8 9.		(-1, 1, 2, -1, 1) (MOF
55	24/23	40-12	3,2,0,3	Soft	gny	10	M	same as above (Fty Ash), (more 10:10 HNV = Oppor
	1	/				3	ML	
65	24	55	WOH	Soft	ary	15		Same as above (Fly Ash), (we
	/	/				8 9		T.D. 180' BOTTOM OF WELL 17.5' has
	X-904 (2-95					20		

LOG OF BORING

CHOEDISON/PENN POWER

NO. 1-1-4-1

	e Elevation (Ft/MSL):					(ft)	Drilling Method: Date Drilled:	04/20	195 (mm/c	
ren	ole Diameter: 55 inch	ies,	Fram _Q T	0 18.	5'		Drilled By: No		DELLLING:	YERVIL
		es,	From T	°		f.1	Drillers License N		-n	_
Total	Depth:		- LIGIAN V.		91	n) ft) <i>B45</i>	Logged By:			\rightarrow
Deptr	to Static Ground Wate SWL Measured:	1/2	0/95		m/dd/		Township or Mu			SHIP
Jate :	WL Measured:	112				137	1311131115	ciputy. <u></u>	700,4 70,000	
(Ft)	Lithologic Description	Plot	Ground Water* Observation	No.	Rec**		Comments	Well/Piezom	neter Construction	(Ft)
								-		5
	DAKE GREY SILT WITH TRACE FINE SAND AND REGARDS (TOPSOIL) VERYSOFT TO SOFT FLY ASH			,	lid24	moist		CRETE	CRETE	
								Велион	4 Bentoure	
1	SAA, TRACE FINE TO INED. SAND, CHARSENING WITH DE PTH (FLY ASA IS LAMINATED)			2	12/24					5 -
- //2						WATERT	ABLE ENCOUNTERED	¥5 SILKA	4" #5	10 -
.	SAA (FLYASH) I			3	23/24	2 96' MOIST,	/ωετ.	SAND PACK	SAND PACE	
.15		ML 								15-
	SAA (FLY ASH)			4	24/24	WET				
18										18
20										20-
					ļ				***************************************	-
										-
1	,									_
	* ▼ Encountered G	roun	d Water	▼ Co	mposit	e Static \	Nater Level	** Recov	ered/Attempter	4

MP-18 •	3	-2	New Cotothe Ach Disposal Facility DRILLING METHOD. HOA GULT D. 195/8 BORING NO MP-18
MP-10	Current Ash App. Arcan		SAMPLING METHOD: 2. D'SPIT SOME OFFILLING WITH SO IN. CHOP. WATER LEVEL 23.81 TIME TIME TIME TATE TOPIC OPTILLING START FINGSM TIME TIME TOPIC OPTIL OPTIL
DATUM	ELEVATION		SHAFACE CONDITIONS: Open Fresh Swamp are
SALPLER THE EST PROPERTY OF SALPH EST PROPER	SOL OF LEITY COUSISTERICY COUSISTERICY	DEPTH INFEET SOIL GRAPH	
55 18 6-2 1,		0	morest) (homograps) (elyach) (F
		2	11:25 HN1=0pp
1		3	Water at = 88' pas
55 24 55 7 W	of Bra	5	Forganic biminal, (very soft)
		7 MJ	11:40 HOU-Op
55 24 55 71 W	ry Voy Yes	10	10.8-10.6 same de above 2 10.6-12.0 yellowish Brom(104) well graded Fire to medium grained band, trace sitt
		3 - SV	VII:55 HIVU-OF
55 20 55 17 2	At loose Year	1 11	Came as above. HNU-Op
		6 ÷	Total depth 171 Augusco
		9	
FORM X-904 (2-95)			PINK COPY - FILE COPY

LOG OF BORING

OHOSDISON/PENN FOWER

otal epti	ole Diameter: 9 inc inc Depth: a to Static Ground Wat SWL Measured:	hes, i	rom T	° <u> </u>	<u>17</u> (8 (Drillers License N ft) Logged By: ft) BSS County: LA	2 KENGLER	=			
pth t)	Lithologic Description	Plot	Ground Water Observation	Samples No. Rec**		Comments	Well/Piezometer Construction				
5	LYNK OKE, IS TO THE FIRE SAND AND DEG ANDS. IN THE REP. V. SETTION SENEMES FLY AST			1	18,24	Dey Tumuist	QUER 4" QUICK CRETE TYC CRETE RISTR	9			
5	Beown SILT WITH CLAY AND DEGANIC LAMINAE, V.SOFT, LAMINATED	M.)	7/	2	16/24	WATER TABLE ENCOUNTERED 3 3.8' WET	BENTONITE BENTONITE	5-			
Ū	DO-10.6' SAA 26-12 O' YELDWIZH BEDWN ELL GRADED, FINE TO MED. AND, TRACE SILT, COOSE			3	18/24	WET .	#5 PVL #5 SILICA SLOT SILICA SAND SLOTE SAND PACK PACK	<i>1</i> 3-			
5	SAA	SW ::		4	20/24			15-			
<i>b</i>								ಎು-			
